Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các dạng tích phân hàm ẩn điển hình - Đặng Việt Đông

Tích phân hàm ẩn là một dạng toán vận dụng cao (VDC, nâng cao, khó …) thường gặp trong các đề thi thử THPT Quốc gia 2020 môn Toán, nhưng dạng toán này lại ít được đề cập đến trong sách giáo khoa Giải tích 12, điều này đã gây không ít khó khăn cho học sinh trong quá trình định hướng và tìm lời giải. giới thiệu đến thầy, cô và các em học sinh tài liệu chuyên đề các dạng tích phân hàm ẩn điển hình do thầy Đặng Việt Đông biên soạn. Tài liệu gồm 57 trang, hướng dẫn giải một số bài toán tích phân hàm ẩn thường gặp trong đề thi trắc nghiệm Toán 12 và đề thi thử THPT Quốc gia 2020 môn Toán. Khái quát nội dung chuyên đề các dạng tích phân hàm ẩn điển hình – Đặng Việt Đông: DẠNG 1 : ÁP DỤNG CÁC QUY TẮC VÀ ĐẠO HÀM CỦA HÀM SỐ HỢP. 1. Nếu $u = u(x)$ và $v = v(x)$ thì $(uv)’ = u’v + uv’.$ Nếu $\left[ {f(x).g(x)} \right]’ = h(x)$ thì $f(x).g(x) = \int h (x)dx.$ 2. Nếu $u = u(x)$ và $v = v(x)$ thì $\left( {\frac{u}{v}} \right)’ = \frac{{u’v – uv’}}{{{v^2}}}$ với $v \ne 0.$ Nếu $\left( {\frac{{f(x)}}{{g(x)}}} \right)’ = h(x)$ thì $\frac{{f(x)}}{{g(x)}} = \int h (x)dx.$ 3. Nếu $u = u(x)$ thì $\left( {\sqrt u } \right)’ = \frac{{u’}}{{2\sqrt u }}$ với $u > 0.$ Nếu $\left[ {\sqrt {f(x)} } \right]’ = h(x)$ thì $\sqrt {f(x)} = \int h (x)dx.$ 4. Nếu $u = u(x)$ thì $\left( {{e^u}} \right)’ = u’.{e^u}.$ Nếu $\left( {{e^{f(x)}}} \right)’ = g(x)$ thì ${e^{f(x)}} = \int g (x)dx.$ 5. Nếu $u = u(x)$ nhận giá trị dương trên K thì $[\ln u]’ = \frac{{u’}}{u}$ trên $K.$ Nếu $\left[ {\ln (f(x))} \right]’ = g(x)$ thì $\ln (f(x)) = \int g (x)dx.$ DẠNG 2 : PHƯƠNG PHÁP ĐỔI BIẾN. TÍCH PHÂN HÀM ẨN ĐỔI BIẾN DẠNG 1: Cho $\int_a^b {u’} (x).f[u(x)]dx$, tính $\int_a^b f (x)dx.$ Hoặc cho $\int_a^b f (x)dx$, tính $\int_a^b {u’} (x).f[u(x)]dx.$ TÍCH PHÂN HÀM ẨN ĐỔI BIẾN DẠNG 2: Tính $\int_a^b f (x)dx$, biết hàm số $f(x)$ thỏa mãn $A.f(x) + B.u’.f(u) + C.f(a + b – x) = g(x).$ TÍCH PHÂN HÀM ẨN ĐỔI BIẾN DẠNG 3: Lần lượt đặt $t = u(x)$ và $t = v(x)$ để giải hệ phương trình hai ẩn, suy ra hàm số $f(x).$ TÍCH PHÂN HÀM ẨN ĐỔI BIẾN DẠNG 4: Cho $f(x).f(a + b – x) = {k^2}$, khi đó $I = \int_a^b {\frac{{dx}}{{k + f(x)}}} = \frac{{b – a}}{{2k}}.$ TÍCH PHÂN HÀM ẨN ĐỔI BIẾN DẠNG 5: Cho hàm số $y = f(x)$ thỏa mãn $g[f(x)] = x$ và $g(t)$ là hàm đơn điệu. Hãy tính tích phân $I = \int_a^b f (x)dx.$ DẠNG 3 : PHƯƠNG PHÁP TỪNG PHẦN. Tích phân từng phần với hàm ẩn thường áp dụng cho những bài toán mà giả thiết hoặc kết luận có một trong các tích phân sau: $\int_a^b u (x).f'(x)dx$ hoặc $\int_a^b {u’} (x).f(x)dx.$ DẠNG 4 : PHƯƠNG TRÌNH VI PHÂN TUYẾN TÍNH CẤP 1. Bài toán tích phân liên quan đến biểu thức $f'(x) + p(x).f(x) = h(x).$ [ads] Xem thêm : + Chuyên đề tích phân hàm ẩn – Hoàng Phi Hùng + Bài tập trắc nghiệm tích phân hàm ẩn có đáp án và lời giải + Hướng dẫn giải bài toán tích phân hàm ẩn – Nguyễn Hoàng Việt + Bài tập trắc nghiệm tích phân hàm ẩn có đáp án và lời giải chi tiết – Đặng Việt Đông

Nguồn: toanmath.com

Đọc Sách

Nguyên hàm của hàm số lượng giác
Tài liệu gồm 15 trang, trình bày bảng nguyên hàm của các hàm số lượng giác thường gặp và hướng dẫn giải một số dạng toán điển hình về nguyên hàm của hàm số lượng giác, đây là dạng toán thường gặp trong chương trình Toán 12 phần Giải tích chương 3: Nguyên hàm – Tích phân và Ứng dụng. I. BẢNG NGUYÊN HÀM CỦA MỘT SỐ THƯỜNG GẶP II. CÁC DẠNG TOÁN 1. Dạng 1: $I = \int {\frac{{dx}}{{\sin (x + a)\sin (x + b)}}} .$ a. Phương pháp tính. b. Chú ý. c. Ví dụ minh họa. 2. Dạng 2: $I = \int {\tan (x + a)\tan (x + b)dx.} $ a. Phương pháp tính. b. Chú ý. c. Ví dụ minh họa. 3. Dạng 3: $I = \int {\frac{{dx}}{{a\sin x + b\cos x}}} .$ a. Phương pháp tính. b. Ví dụ minh họa. 4. Dạng 4: $I = \int {\frac{{dx}}{{a\sin x + b\cos x + c}}} .$ a. Phương pháp tính. b. Ví dụ minh họa. 5. Dạng 5: $I = \int {\frac{{dx}}{{a{{\sin }^2}x + b\sin x\cos x + c{{\cos }^2}x}}} .$ a. Phương pháp tính. b. Ví dụ minh họa. 6. Dạng 6: $I = \int {\frac{{{a_1}\sin x + {b_1}\cos x}}{{{a_2}\sin x + {b_2}\cos x}}dx} .$ a. Phương pháp tính. b. Chú ý. c. Ví dụ minh họa. 7. Dạng 7: Biến đổi đưa về nguyên hàm cơ bản hoặc 6 dạng ở trên. Ví dụ minh họa.
Bài giảng ứng dụng của tích phân
Tài liệu gồm 48 trang, trình bày lí thuyết trọng tâm và hướng dẫn giải các dạng bài tập chuyên đề ứng dụng của tích phân, giúp học sinh lớp 12 tham khảo khi học chương trình Giải tích 12 chương 3: Nguyên hàm, tích phân và ứng dụng. Mục tiêu : Kiến thức : + Nắm vững công thức tính diện tích hình phẳng, thể tích vật thể và thể tích khối tròn xoay. + Ghi nhớ các kiến thức cơ bản về phương trình đường thẳng, parabol, đường tròn và elip. + Nắm được định nghĩa, tính chất và các phương pháp tính tích phân. Kĩ năng : + Hiểu rõ các ứng dụng của tích phân để vận dụng vào việc tính diện tích hình phẳng và thể tích của các vật thể, cũng như vật thể tròn xoay. + Lập được phương trình đường thẳng, parabol, đường tròn và elip để xử lí các bài toán liên quan. + Tính được diện tích hình phẳng, thể tích vật thể và thể tích khối tròn xoay trong các trường hợp cụ thể. A. ỨNG DỤNG TÍCH PHÂN ĐỂ TÍNH DIỆN TÍCH HÌNH PHẲNG I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Tính diện tích hình phẳng. – Bài toán 1: Diện tích hình phẳng giới hạn bởi các đồ thị bởi một đường cong. – Bài toán 2: Diện tích hình phẳng giới hạn bởi hai đường cong. Dạng 2 : Diện tích hình phẳng giới hạn bởi hai đường cong. B. THỂ TÍCH VẬT THỂ VÀ THỂ TÍCH KHỐI TRÒN XOAY I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Tính thể tích vật thể. Dạng 2 : Tính thể tích khối tròn xoay.
Bài giảng tích phân và phương pháp tính tích phân
Tài liệu gồm 70 trang, trình bày lí thuyết trọng tâm và hướng dẫn giải các dạng bài tập chuyên đề tích phân và phương pháp tính tích phân, giúp học sinh lớp 12 tham khảo khi học chương trình Giải tích 12 chương 3: Nguyên hàm, tích phân và ứng dụng. Mục tiêu : Kiến thức : + Nắm được định nghĩa và các tính chất của tích phân. + Nắm vững các phương pháp tính nguyên hàm và bảng nguyên hàm cơ bản để áp dụng tính tích phân. + Nắm vững các tính chất tích phân của các hàm số chẵn, hàm số lẻ và các quy tắc đạo hàm của hàm số hợp. + Nắm vững các ý nghĩa vật lí của đạo hàm, từ dó giải quyết các bài toán thực tế sử dụng tích phân. Kĩ năng : + Hiểu rõ định nghĩa và tính chất của tích phân để vận dụng vào việc tính tích phân. + Sử dụng thành thạo bảng nguyên hàm và các phương pháp tính tích phân. + Vận dụng tích phân vào các bài toán thực tế. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Tính tích phân bằng cách sử dụng định nghĩa, tính chất. Dạng 2 : Tính tích phân bằng phương pháp đổi biến. Dạng 3 : Tính tích phân bằng phương pháp tích phân từng phần. Dạng 4 : Tính tích phân các hàm đặc biệt, tích phân hàm ẩn. Dạng 5 : Một số bài toán thực tế ứng dụng tích phân.
Bài giảng nguyên hàm và phương pháp tìm nguyên hàm
Tài liệu gồm 53 trang, trình bày lí thuyết trọng tâm và hướng dẫn giải các dạng bài tập chuyên đề nguyên hàm và phương pháp tìm nguyên hàm, giúp học sinh lớp 12 tham khảo khi học chương trình Giải tích 12 chương 3: Nguyên hàm, tích phân và ứng dụng. Mục tiêu : Kiến thức : + Nắm được định nghĩa nguyên hàm; các tính chất của nguyên hàm và bảng nguyên hàm cơ bản. + Nắm vững các phương pháp tính nguyên hàm. Kĩ năng : + Hiểu rõ định nghĩa và tính chất của nguyên hàm để vận dụng vào việc tìm nguyên hàm. + Sử dụng thành thạo bảng nguyên hàm và các phương pháp tìm nguyên hàm. + Vận dụng nguyên hàm vào các bài toán thực tế. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Tìm nguyên hàm bằng định nghĩa. – Bài toán 1. Nguyên hàm của các hàm số sơ cấp và hàm số mũ. – Bài toán 2. Nguyên hàm của hàm số lượng giác. – Bài toán 3. Các bài toán thực tế ứng dụng nguyên hàm. Dạng 2 : Tìm nguyên hàm bằng phương pháp đổi biến. – Bài toán 1. Phương pháp đổi biến dạng 1. – Bài toán 2. Tìm nguyên hàm bằng cách đổi biến dạng 2. Dạng 3 : Tìm nguyên hàm bằng phương pháp nguyên hàm từng phần.