Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh năm 2018 2019 môn Toán chuyên Lê Quý Đôn Bình Định

Nội dung Đề tuyển sinh năm 2018 2019 môn Toán chuyên Lê Quý Đôn Bình Định Bản PDF - Nội dung bài viết Đề tuyển sinh năm 2018-2019 môn Toán chuyên Lê Quý Đôn Bình Định Đề tuyển sinh năm 2018-2019 môn Toán chuyên Lê Quý Đôn Bình Định Đề tuyển sinh lớp 10 năm 2018 – 2019 môn Toán trường THPT chuyên Lê Quý Đôn – Bình Định là bài thi được biên soạn theo dạng tự luận, gồm 5 bài toán, thời gian làm bài là 120 phút. Đề thi có lời giải chi tiết để giúp các thí sinh hiểu rõ vấn đề và làm bài hiệu quả. Trong đề tuyển sinh có một bài toán thú vị: Một người cần đi từ điểm A đến B cách nhau 120 km bằng xe máy với vận tốc không đổi. Để đến B đúng thời điểm đã định, người đó phải tăng vận tốc sau khi nghỉ 10 phút sau 1 giờ điều động. Hãy tìm vận tốc ban đầu của người đó để đến điểm B đúng giờ. Bài toán thứ hai đưa ra một bài toán về tam giác nội tiếp trong đường tròn, yêu cầu chứng minh một số tính chất của tam giác đó. Bài toán này cần sự suy luận logic và khả năng tính toán chính xác của thí sinh. Đề tuyển sinh môn Toán chuyên Lê Quý Đôn Bình Định không chỉ đánh giá kiến thức mà còn đánh giá khả năng tư duy logic và sự tỉ mỉ trong các phép tính. Hy vọng các thí sinh sẽ làm tốt bài thi này để có cơ hội tiếp tục học tập tại trường THPT chuyên danh tiếng này.

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh vào lớp 10 môn Toán năm 2021 - 2022 sở GDĐT Bắc Kạn
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh vào lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Bắc Kạn; kỳ thi được diễn ra vào ngày 17 tháng 06 năm 2021.
Đề tuyển sinh lớp 10 môn Toán năm 2021 - 2022 sở GDĐT Đà Nẵng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh lớp 10 môn Toán năm học 2021 – 2022 sở GD&ĐT thành phố Đà Nẵng. Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Đà Nẵng : + Tìm hai số tự nhiên, biết rằng tổng của chúng bằng 2021 và hiệu của số lớn và số bé bằng 15. + Một địa phương lên kế hoạch xét nghiệm SARS-CoV-2 cho 12000 người trong một thời gian quy định. Nhờ cải tiến phương pháp nên mỗi giờ xét nghiệm được thêm 1 000 người. Vì thế, địa phương này hoàn thành sớm hơn kế hoạch là 16 giờ. Hỏi theo kế hoạch, địa phương này phải xét nghiệm trong thời gian bao nhiêu giờ? + Cho tam giác nhọn ABC có AB < AC, các đường cao BD, CE (D thuộc AC, E thuộc AB) cắt nhau tại H. a) Chứng minh rằng tứ giác BEDC nội tiếp. b) Gọi M là trung điểm của BC. Đường tròn đường kính AH cắt AM tại điểm G (G khác A). Chứng minh rằng AE.AB = AC.AM. c) Hai đường thẳng DE và BC cắt nhau tại K. Chứng minh rằng MAC = GCM và đường thẳng nối tâm hai đường tròn ngoại tiếp hai tam giác MBB, MCD song song với đường thẳng KG.
Đề tuyển sinh lớp 10 THPT môn Toán năm 2021 - 2022 sở GDĐT Hải Dương
Thứ Ba ngày 15 tháng 06 năm 2021, sở Giáo dục và Đào tạo tỉnh Hải Dương tổ chức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2021 – 2022. Đề tuyển sinh lớp 10 THPT môn Toán năm 2021 – 2022 sở GD&ĐT Hải Dương gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi 120 phút (không kể thời gian phát đề), đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2021 – 2022 sở GD&ĐT Hải Dương : + Một mảnh đất hình chữ nhật có chu vi 24m. Nếu tăng chiều dài lên 2m và giảm chiều rộng đi 1m thì diện tích mảnh đất tăng thêm 1m2. Tìm độ dài các cạnh của mảnh đất hình chữ nhật ban đầu. + Cho phương trình 2 x m x m 2 1 3 0 (với m là tham số). Chứng minh rằng phương trình đã cho luôn có hai nghiệm phân biệt 1 x và 2 x với mọi m. Tìm các giá trị của tham số m sao cho: 1 2 x x 4. + Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn O R và hai đường cao AE, BF cắt nhau tại H (E BC F AC). a) Chứng minh rằng bốn điểm A, B, E, F cùng nằm trên một đường tròn. b) Chứng minh rằng: OC EF. 2. Cho tam giác ABC có B C là các góc nhọn và có diện tích không đổi. Tìm giá trị nhỏ nhất của biểu thức 2 2 2 P BC AC AB 2.
Đề tuyển sinh vào lớp 10 năm 2021 trường THPT chuyên KHTN - Hà Nội
Sáng thứ Ba ngày 15 tháng 06 năm 2021, trường THPT chuyên Khoa học Tự nhiên, Đại học Khoa học Tự nhiên, Đại học Quốc gia Hà Nội tổ chức kỳ thi tuyển sinh vào lớp 10 môn Toán năm học 2021 – 2022. Đề tuyển sinh vào lớp 10 năm 2021 trường THPT chuyên KHTN – Hà Nội (dành cho tất cả các thí sinh) gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết (đáp án và lời giải được biên soạn bởi các tác giả: Trần Nam Dũng, Võ Quốc Bá Cẩn, Lê Viết Ân, Nguyễn Văn Quý). Trích dẫn đề tuyển sinh vào lớp 10 năm 2021 trường THPT chuyên KHTN – Hà Nội : + Tìm số nguyên dương n nhỏ nhất, biết rằng khi chia n cho 7, 9, 11, 13, ta nhận được các số dư tương ứng là 3, 4, 5, 6. + Cho tam giác nhọn ABC có điểm P nằm trong tam giác (P không nằm trên các cạnh). Gọi J, K, L lần lượt là tâm đường tròn nội tiếp các tam giác PBC, PCA, PAB. a) Chứng minh rằng ZBJC + ZCKA + ZALB = 450°. b) Giả sử PB = PC và PC < PA. Gọi X, Y, Z lần lượt là hình chiếu vuông góc của các điểm J, K, L trên các cạnh BC, CA, AB của tam giác ABC. Dựng hình bình hành XYWZ. Chứng minh rằng W nằm trên phân giác của góc BAC. + Cho tập A = {1, 2, …, 2021). Tìm số nguyên dương k > 2 lớn nhất sao cho ta có thể chọn được k số phân biệt từ tập A mà tổng của hai số phân biệt bất kỳ trong k số được chọn không chia hết cho hiệu của chúng.