Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Nhị thức Newton và ứng dụng - Nguyễn Minh Tuấn

giới thiệu đến quý thầy, cô giáo và các em học sinh tài liệu chuyên đề nhị thức Newton và ứng dụng, tài liệu gồm 101 trang được biên soạn bởi các tác giả nhóm Tạp chí và Tư liệu Toán học: Nguyễn Minh Tuấn (chủ biên), Doãn Quang Tiến, Nguyễn Mai Hoàng Anh, Ngô Nguyên Quỳnh, Trần Văn Dũng; đề cập đến gần như là đầy đủ các dạng toán liên quan đến nhị thức Newton: tìm hệ số trong khai triển, chứng minh đẳng thức tổ hợp, và các biến dạng khác có thể gặp trong đề thi THPT Quốc Gia môn Toán hay đề thi học sinh giỏi môn Toán cấp tỉnh mảng không chuyên, nhằm giúp các bạn có cái nhìn bao quát về chủ đề này. Khái quát nội dung tài liệu nhị thức Newton và ứng dụng – Nguyễn Minh Tuấn: Phần 1 . Kí hiệu tổ hợp. + Vấn đề 1.1 Hệ số nhị thức. + Vấn đề 1.2 Công thức tổ hợp. Phần 2 . Tam giác Pascal và sự hình thành của công thức nhị thức Newton. + Vấn đề 2.1 Sự hình thành của công thức nhị thức. + Vấn đề 2.2 Câu chuyện về nhị thức Newton. + Vấn đề 2.3 Tam giác Pascal. + Vấn đề 2.4 Chứng minh công thức tổng quát p_n,k và công thức nhị thức Newton. + Vấn đề 2.5 Chứng minh công thức nhị thức Newton. Phần 3 . Một số tính chất cơ bản. + Vấn đề 3.1 Nhắc lại khai triển nhị thức Newton. + Vấn đề 3.2 Dấu hiệu các bài toán sử dụng nhị thức Newton trong các bài toán chứng minh đẳng thức. [ads] Phần 4 . Các dạng toán liên quan tới nhị thức newton. + Vấn đề 4.1 Bài toán khai triển nhị thức và chứng minh đẳng thức cơ bản. + Vấn đề 4.2 Bài toán về hệ số lớn nhất. + Vấn đề 4.3 Chứng minh các đẳng thức. + Vấn đề 4. Các đẳng thức cơ bản. + Vấn đề 4. Ứng dụng một số tính chất đẳng thức đặc biệt. + Vấn đề 4.4 Ứng dụng đạo hàm trong chứng minh đẳng thức tổ hợp. + Vấn đề 4.5 Ứng dụng tích phân trong chứng minh đẳng thức tổ hợp. + Vấn đề 4.6 Ứng dụng số phức chứng minh đẳng thức tổ hợp. + Vấn đề 4.7 Đồng nhất hệ số. + Vấn đề 4.8 Bài tập tự luyện. Phần 5 . Bất đẳng thức liên quan tới công thức tổ hợp. + Vấn đề 5.1 Lí thuyết và ví dụ minh họa. + Vấn đề 5.2 Bài tập tự giải. Phần 6 . Tính chất số học của hệ số nhị thức. + Vấn đề 6.1 Đôi nét về lịch sử nghiên cứu tính chất số học của hệ số nhị thức. + Vấn đề 6.2 Các bài toán minh họa.

Nguồn: toanmath.com

Đọc Sách

Tổng ôn tập TN THPT 2021 môn Toán Tổ hợp và xác suất
Tài liệu gồm 30 trang, được tổng hợp bởi thầy giáo Nguyễn Bảo Vương, tuyển tập câu hỏi và bài tập trắc nghiệm chuyên đề tổ hợp và xác suất, có đáp án và lời giải chi tiết. Các câu hỏi và bài tập được trích từ các đề thi thử tốt nghiệp THPT năm 2021 môn Toán của các trường THPT và sở GD&ĐT trên cả nước, với mục đích giúp các em học sinh rèn luyện, rà soát kiến thức chủ đề Toán 11 (Đại số và Giải tích 11 chương 2), trước khi bước vào kỳ thi tốt nghiệp THPT 2021 môn Toán và các kỳ thi tuyển sinh Đại học – Cao đẳng. Mục lục tài liệu tổng ôn tập TN THPT 2021 môn Toán: Tổ hợp và xác suất: 1. Mức độ nhận biết: 23 câu. + Câu hỏi và bài tập (Trang 01). + Đáp án và lời giải chi tiết (Trang 03). 2. Mức độ thông hiểu: 21 câu. + Câu hỏi và bài tập (Trang 07). + Đáp án và lời giải chi tiết (Trang 09). 3. Mức độ vận dụng thấp: 17 câu. + Câu hỏi và bài tập (Trang 14). + Đáp án và lời giải chi tiết (Trang 16). 4. Mức độ vận dụng cao: 13 câu. + Câu hỏi và bài tập (Trang 22). + Đáp án và lời giải chi tiết (Trang 24).
Tuyển tập một số bài toán tổ hợp ôn thi HSG Toán
Tổ hợp là một vấn đề khó của Toán sơ cấp nói chung cũng như trong các kì thi Toán các cấp thì chủ đề này luôn có một chỗ đứng nhất định. Các bài toán tổ hợp đôi khi không cần những biến đổi toán học phức tạp mà đòi hỏi tư duy nhạy bén của người làm bài, vì vậy việc luyện tập với nhiều bài toán sẽ giúp chúng ta luyện thêm kiến thức và kĩ năng xử lý các bài toán này. Với mong muốn tạo ra một tài liệu giúp các bạn học sinh ôn luyện chủ đề khó nhằn này, Tạp Chí Và Tư Liệu Toán Học đã cố gắng tổng hợp nhiều bài đã sưu tầm được thành một tuyển tập nho nhỏ giúp các bạn luyện tập chuẩn bị cho các kì thi Olympic Toán sắp tới mà các bạn tham dự. Tài liệu là sự kết hợp của nhiều nguồn, nhiều tài liệu khác lại nhằm mang tới cho bạn đọc những bài toán thú vị nhất. Trong này sẽ không đề cập tới các phương pháp như: đếm bằng hai cách, truy hồi, song ánh, hàm sinh …. Các bạn có thể tìm đọc chúng ở các tài liệu khác. Hy vọng đây sẽ là công cụ đắc lực của các bạn. Xem thêm : + Một số chuyên đề toán tổ hợp bồi dưỡng học sinh giỏi THPT – Phạm Minh Phương + Tuyển tập các chuyên đề tổ hợp
Các bài toán tổ hợp - xác suất hay và khó
Tài liệu gồm 91 trang, được biên soạn bởi nhóm tác giả Tạp Chí Và Tư Liệu Toán Học, tuyển chọn các bài toán tổ hợp – xác suất hay và khó, giúp học sinh học tốt chương trình Đại số và Giải tích 11 chương 2. Khái quát nội dung tài liệu các bài toán tổ hợp – xác suất hay và khó: 1. Lý thuyết cần nhớ 1.1 Xác suất có điều kiện. Xác suất có điều kiện của biến cố A với điều kiện B là một số được xác định bởi công thức P(A|B) = P(AB)/P(B) nếu P(B) > 0. 1.2 Bài toán chia kẹo của Euler. Bài toán chia kẹo của Euler là bài toán nổi tiếng trong lý thuyết tổ hợp. Với những học sinh chuyên Toán cấp ba thì đây là bài toán quen thuộc và có nhiều ứng dụng. Tài liệu trình bày một cách tiếp cận bài toán chia kẹo của Euler cho học sinh lớp 6 & 7 để thấy rằng các bài toán đếm nói riêng và các bài toán tổ hợp nói chung luôn là những bài toán mà lời giải của nó chứa đựng sự hồn nhiên và ngây thơ. 1.3 Một số kết quả của bài toán đếm có yếu tố hình học. 2. Các bài toán tổng hợp
Chuyên đề tổ hợp và xác suất - Dương Minh Hùng
Tài liệu gồm 87 trang, được biên soạn bởi thầy giáo Dương Minh Hùng, tóm tắt lý thuyết và hướng dẫn giải các dạng bài tập chuyên đề tổ hợp và xác suất, giúp học sinh học tốt chương trình Đại số và Giải tích 11 chương 2. BÀI 1 . CÁC QUY TẮC ĐẾM. + Dạng 1: Sử dụng quy tắc cộng. + Dạng 2: Sử dụng quy tắc nhân. + Dạng 3: Sử dụng quy tắc cộng và quy tắc nhân. BÀI 2 . HOÁN VỊ – CHỈNH HỢP – TỔ HỢP. + Dạng 1: Bài toán chỉ sử dụng hoán vị hoặc tổ hợp hoặc chỉnh hợp. + Dạng 2: Bài toán kết hợp hoán vị, tổ hợp và chỉnh hợp. + Dạng 3: Bài toán liên quan đến hình học. + Dạng 4: Giải phương trình, bất phương trình, hệ phương trình, chứng minh liên quan đến hoán vị, tổ hợp, chỉnh hợp. BÀI 3 . NHỊ THỨC NEWTON. + Dạng 1: Khai triển một nhị thức Newton. + Dạng 2: Tìm hệ số, số hạng trong khai triển nhị thức Newton. + Dạng 3: Chứng minh, tính giá trị của biểu thức đại số tổ hợp có sử dụng nhị thức Newton. BÀI 4 . PHÉP THỬ VÀ BIẾN CỐ. + Dạng 1: Mô tả không gian mẫu, biến cố. + Dạng 2: Các câu hỏi lý thuyết tổng hợp. BÀI 5 . XÁC SUẤT CỦA BIẾN CỐ. + Dạng 1: Tính xác suất bằng định nghĩa. + Dạng 2: Tính xác suất bằng công thức cộng. + Dạng 3: Tính xác suất bằng công thức nhân. + Dạng 4: Bài toán kết hợp quy tắc cộng và quy tắc nhân xác suất.