Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài giảng Toán 8

THCS. giới thiệu đến bạn đọc tài liệu bài giảng Toán 8, bao gồm cả Đại số 8 và Hình học 8, tài liệu phân dạng chi tiết và tuyển chọn các bài tập thuộc chương trình Đại số 8 và Hình học 8. PHẦN ĐẠI SỐ LỚP 8 CHƯƠNG 1 . PHÉP NHÂN VÀ PHÉP CHIA CÁC ĐA THỨC Chủ đề 1 . NHÂN ĐƠN THỨC VỚI ĐA THỨC – NHÂN ĐA THỨC VỚI ĐA THỨC Dạng 1. Làm tính nhân. Dạng 2. Rút gọn biểu thức và tính giá trị của biểu thức. Dạng 3. Chứng minh giá trị của biểu thức không phụ thuộc vào giá trị các biến. Dạng 4. Chứng minh đẳng thức. Dạng 5. Tìm giá trị của x thỏa mãn đẳng thức cho trước. Chủ đề 2 . NHỮNG HẰNG ĐẲNG THỨC ĐÁNG NHỚ Dạng 1. Vận dụng các hằng đẳng thức để tính. Dạng 2. Rút gọn biểu thức và tính giá trị của biểu thức. Dạng 3. Chứng minh giá trị của biểu thức không phụ thuộc vào các biến. Dạng 4. Chứng minh đẳng thức. Dạng 5. Tìm x thỏa mãn đẳng thức. Dạng 6. Chứng minh chia hết. Dạng 7. Chứng minh giá trị của một biểu thức luôn luôn dương (hay âm) với mọi giá trị của biến. Dạng 8. Tìm giá trị nhỏ nhất, giá trị lớn nhất của biểu thức. Chủ đề 3 . PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ BẰNG PHƯƠNG PHÁP ĐẶT NHÂN TỬ CHUNG Dạng 1. Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung. Dạng 2. Tính giá trị của một biểu thức. Dạng 3. Tìm x thỏa mãn đẳng thức cho trước. Dạng 4. Chứng minh giá trị của biểu thức A chia hết cho số k. Chủ đề 4 . PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ BẰNG PHƯƠNG PHÁP DÙNG HẰNG ĐẲNG THỨC Dạng 1. Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức. Dạng 2. Tính giá trị của biểu thức. Dạng 3. Tìm x thỏa mãn đẳng thức cho trước. Dạng 4. Chứng minh giá trị của biểu thức A chia hết cho số k. Chủ đề 5 . PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ BẰNG PHƯƠNG PHÁP NHÓM CÁC HẠNG TỬ Dạng 1. Phân tích đa thức thành nhân tử bằng phương pháp nhóm các hạng tử. Dạng 2. Tính giá trị của biểu thức. Dạng 3. Tìm x thỏa mãn đẳng thức cho trước. Dạng 4. Chứng minh giá trị của biểu thức A chia hết cho số k. Chủ đề 6 . PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ BẰNG CÁCH PHỐI HỢP NHIỀU PHƯƠNG PHÁP Dạng 1. Phân tích đa thức thành nhân tử bằng phương pháp tách các hạng tử. Dạng 2. Phân tích đa thức thành nhân tử bằng phương pháp thêm bớt cùng một hạng tử. Dạng 3. Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp. Dạng 4. Tính giá trị của một biểu thức. Dạng 5. Tìm x thỏa mãn đẳng thức cho trước. Dạng 6. Chứng minh giá trị của biểu thức A chia hết cho số k. Chủ đề 7 . CHIA ĐƠN THỨC CHO ĐƠN THỨC. CHIA ĐA THỨC CHO ĐƠN THỨC Dạng 1. Làm tính chia đơn thức hoặc đa thức cho đơn thức. Dạng 2. Tìm điều kiện để đơn thức hoặc đa thức chia hết cho một đơn thức. Dạng 3. Tính giá trị của biểu thức. Chủ đề 8 . CHIA ĐA THỨC MỘT BIẾN ĐÃ SẮP XẾP Dạng 1. Chia đa thức cho đa thức. Dạng 2. Tính giá trị của biểu thức. Dạng 3. Tìm x thỏa mãn đẳng thức cho trước. Dạng 4. Xác định hệ số của một đa thức để đa thức này chia hết cho một đa thức khác. Dạng 5. Tìm số nguyên x để giá trị của đa thức A(x) chia hết cho giá trị của đa thức B(x). CHƯƠNG 2 . PHÂN THỨC ĐẠI SỐ Chủ đề 1 . PHÂN THỨC ĐẠI SỐ – TÍNH CHẤT CƠ BẢN CỦA PHÂN THỨC Dạng 1. Chứng minh hai phân thức bằng nhau. Dạng 2. Tìm đa thức trong đẳng thức. Dạng 3. Tìm giá trị nhỏ nhất, giá trị lớn nhất của phân thức. Chủ đề 2 . RÚT GỌN PHÂN THỨC – QUY ĐỒNG MẪU THỨC NHIỀU PHÂN THỨC Dạng 1. Rút gọn phân thức. Dạng 2. Chứng minh đẳng thức. Dạng 3. Tính giá trị biểu thức. Dạng 4. Chứng minh giá trị biểu thức không phụ thuộc vào biến. Dạng 5. Tìm x thỏa mãn đẳng thức cho trước. Dạng 6. Quy đồng mẫu thức. Chủ đề 3 . PHÉP CỘNG CÁC PHÂN THỨC ĐẠI SỐ Dạng 1. Cộng trừ các phân thức cùng mẫu thức. Dạng 2. Cộng các phân thức không cùng mẫu thức. Dạng 3. Tìm x thỏa mãn đẳng thức cho trước. Dạng 4. Chứng minh đẳng thức. Chủ đề 4 . PHÉP TRỪ CÁC PHÂN THỨC ĐẠI SỐ Dạng 1. Trừ các phân thức cùng mẫu thức. Dạng 2. Trừ các phân thức không cùng mẫu thức. Dạng 3. Rút gọn và tính giá trị biểu thức. Dạng 4. Chứng minh giá trị biểu thức không phụ thuộc vào biến. Dạng 5. Tìm x thỏa mãn đẳng thức cho trước. Chủ đề 5 . PHÉP NHÂN CÁC PHÂN THỨC ĐẠI SỐ Dạng 1. Thực hiện phép nhân các phân thức. Dạng 2. Rút gọn biểu thức. Dạng 3. Tìm x thỏa mãn đẳng thức cho trước. Dạng 4. Chứng minh giá trị biểu thức không phụ thuộc vào giá trị của biến. Chủ đề 6 . PHÉP CHIA CÁC PHÂN THỨC ĐẠI SỐ Dạng 1. Thực hiện phép tính. Dạng 2. Rút gọn biểu thức. Dạng 3. Tìm x thỏa mãn đẳng thức cho trước. Chủ đề 7 . BIẾN ĐỔI CÁC BIỂU THỨC HỮU TỈ. GIÁ TRỊ CỦA PHÂN THỨC Dạng 1. Tìm điều kiện của biến để phân thức xác định. Dạng 2. Tìm giá trị của x để phân thức bằng 0. Dạng 3. Rút gọn biểu thức. CHƯƠNG 3 . PHÉP NHÂN VÀ CHIA CÁC ĐA THỨC Chủ đề 1 . MỞ ĐẦU VỀ PHƯƠNG TRÌNH PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN SỐ Dạng 1. Xét xem giá trị x = a có là nghiệm của phương trình không? Dạng 2. Xét xem hai phương trình có tương đương không? Dạng 3. Nhận dạng phương trình bậc nhất một ẩn số. Dạng 4. Giải phương trình bậc nhất một ẩn. Chủ đề 2 . PHƯƠNG TRÌNH ĐƯA ĐƯỢC VỀ DẠNG AX + B = 0 Dạng 1. Giải phương trình. Dạng 2. Tìm giá trị của biến để giá trị của hai biểu thức có mối liên quan nào đó. Dạng 3. Tìm giá trị của tham số m để phương trình có nghiệm x = x0. Chủ đề 3 . PHƯƠNG TRÌNH TÍCH Dạng 1. Giải các phương trình tích. Dạng 2. Giải phương trình đưa về phương trình tích. Dạng 3. Biết phương trình có một trong các nghiệm là x = x0, tìm giá trị của tham số m. Chủ đề 4 . PHƯƠNG TRÌNH CHỨA ẨN Ở MẪU Dạng 1. Tìm điều kiện xác định của một phương trình. Dạng 2. Giải phương trình chứa ẩn ở mẫu. Dạng 3. Tìm giá trị của biến để giá trị của hai biểu thức có mối liên quan nào đó. Dạng 4. Biết phương trình tham số m có một trong các nghiệm là x = x0, tìm nghệm còn lại. Chủ đề 5 . GIẢI TOÁN BẰNG CÁCH LẬP PHƯƠNG TRÌNH Dạng 1. Toán về quan hệ giữa các số. Dạng 2. Toán chuyển động. Dạng 3. Toán công việc liên quan đến năng suất và thời gian. Dạng 4. Toán về công việc làm chung, làm riêng. Chủ đề 6 . ÔN TẬP CHƯƠNG III Dạng 1. Giải phương trình. Dạng 2. Tìm giá trị của biến để giá trị của hai biểu thức có mối liên quan nào đó. Dạng 3. Biết phương trình tham số m có một nghiệm là x = x0, tìm các nghiệm còn lại. Dạng 4. Giải bài toán bằng cách lập phương trình. CHƯƠNG 4 . BẤT PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN Chủ đề 1 . LIÊN HỆ GIỮA THỨ TỰ VÀ PHÉP CỘNG LIÊN HỆ GIỮA THỨ TỰ VÀ PHÉP NHÂN Dạng 1. Xác định tính đúng sai của một bất đẳng thức. Dạng 2. So sánh hai số. Dạng 3. Chứng minh bất đẳng thức. Dạng 4. Áp dụng bất đẳng thức để tìm giá trị lớn nhất, giá trị nhỏ nhất của một biểu thức. Chủ đề 2 . BẤT PHƯƠNG TRÌNH MỘT ẨN – BẤT PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN Dạng 1. Kiểm tra giá trị x = a có phải là nghiệm của bất phương trình không? Dạng 2. Biểu diễn tập nghiệm của bất phương trình trên trục số. Dạng 3. Lập bất phương trình của bài toán. Dạng 4. Giải thích sự tương đương của hai bất phương trình. Dạng 5. Giải bất phương trình. Chủ đề 3 . PHƯƠNG TRÌNH CHỨA DẤU GIÁ TRỊ TUYỆT ĐỐI Dạng 1. Giải phương trình |A(x)| = k với k là hằng số (k > 0). Dạng 2. Giải phương trình |A(x)| = |B(x)|. Dạng 3. Giải phương trình |A(x)| = B(x). Chủ đề 4 . ÔN TẬP CHƯƠNG IV Dạng 1. Chứng minh bất đẳng thức. Dạng 2. Tìm giá trị nhỏ nhất, giá trị lớn nhất của biểu thức f(x). Dạng 3. Giải bất phương trình. Dạng 4. Giải phương trình chứa dấu giá trị tuyệt đối. [ads] PHẦN HÌNH HỌC LỚP 8 CHƯƠNG 1 . TỨ GIÁC Chủ đề 1 . TỨ GIÁC Dạng 1. Nhận dạng tứ giác. Dạng 2. Tính số đo góc. Dạng 3. Vẽ tứ giác biết 5 yếu tố. Dạng 4. Chứng minh hệ thức giữa các độ dài, tính độ dài. Chủ đề 2 . HÌNH THANG. HÌNH THANG CÂN Dạng 1. Tính số đo góc. Dạng 2. Chứng minh hai góc bằng nhau, hai đoạn thẳng bằng nhau. Dạng 3. Nhận biết hình thang, hình thang cân. Dạng 4. Tính độ dài đoạn thẳng. Chủ đề 3 . ĐƯỜNG TRUNG BÌNH CỦA TAM GIÁC, CỦA HÌNH THANG Dạng 1. Tính độ dài đoạn thẳng và chứng minh các quan hệ về độ dài. Dạng 2. Chứng minh hai đường thẳng song song. Chứng minh ba điểm thẳng hàng. Chủ đề 4 . DỰNG HÌNH BẰNG THƯỚC VÀ COMPA – DỰNG HÌNH THANG Dạng 1. Dựng tứ giác. Dạng 2. Dựng hình thang. Dạng 3. Dựng tam giác (trừ những trường hợp cơ bản đã biết cách dựng). Chủ đề 5 . ĐỐI XỨNG TRỤC Dạng 1. Vẽ hình đối xứng của một hình cho trước. Dạng 2. Tìm hình có trục đối xứng – tìm trục đối xứng của một hình. Dạng 3. Chứng minh hai đoạn thẳng bằng nhau, hai góc bằng nhau. Dạng 4. Chứng minh hai điểm đối xứng qua một đường thẳng. Dạng 5. Tìm vị trí của một điểm để tổng hai đoạn thẳng ngắn nhất. Chủ đề 6 . HÌNH BÌNH HÀNH Dạng 1. Chứng minh hai góc bằng nhau. tính số đo góc. Dạng 2. Chứng minh hai đoạn thẳng bằng nhau, các quan hệ về độ dài. Tính độ dài đoạn thẳng. Dạng 3. Chứng minh ba điểm thẳng hàng, ba đường thẳng đồng quy. Dạng 4. Chứng minh tứ giác là hình bình hành. Chủ đề 7 . ĐỐI XỨNG TÂM Dạng 1. Vẽ hình đối xứng của một hình cho trước. Dạng 2. Tìm hình có tâm đối xứng. Tìm tâm đối xứng của một hình. Dạng 3. Chứng minh hai đoạn thẳng hoặc hai góc bằng nhau. Dạng 4. Chứng minh hai điểm đối xứng qua một điểm. Chủ đề 8 . HÌNH CHỮ NHẬT Dạng 1. Chứng minh một tứ giác là hình chữ nhật. Dạng 2. Tìm điều kiện của hình A để hình B trở thành hình chữ nhật. Dạng 3. Chứng minh quan hệ bằng nhau giữa các đoạn thẳng, giữa các góc. Tính độ dài đoạn thẳng, tính số đo góc. Dạng 4. Chứng minh quan hệ vuông góc. Chủ đề 9 . ĐƯỜNG THẲNG SONG SONG VỚI MỘT ĐƯỜNG THẲNG CHO TRƯỚC Dạng 1. Chứng tỏ một điểm di động trên một đường thẳng song song với một đường thẳng cho trước. Dạng 2. Chứng minh các đường thẳng song song cách đều. Dạng 3. Chia đoạn thẳng AB cho trước làm nhiều phần bằng nhau. Chủ đề 10 . HÌNH THOI Dạng 1. Chứng minh một tứ giác là hình thoi. Dạng 2. Tìm điều kiện của hình A để hình B trở thành hình thoi. Dạng 3. Chứng minh quan hệ bằng nhau giữa các đoạn thẳng, giữa các góc. Tính độ dài đoạn thẳng, tính số đo góc. Dạng 4. Chứng minh quan hệ vuông góc. Chủ đề 11 . HÌNH VUÔNG Dạng 1. Chứng minh một tứ giác là hình vuông. Dạng 2. Tìm điều kiện của hình A để hình B trở thành hình vuông. Dạng 3. Chứng minh quan hệ bằng nhau giữa các đoạn thẳng, giữa các góc. Tính độ dài đoạn thẳng, tính số đo góc. Dạng 4. Chứng minh quan hệ vuông góc. Chủ đề 12 . ÔN TẬP CHƯƠNG I Dạng 1. Nhận biết tứ giác đặc biệt và tìm điều kiện để một tứ giác trở thành một tứ giác đặc biệt hơn. Dạng 2. Chứng minh hai các đoạn thẳng bằng nhau, hai góc bằng nhau. Tính độ dài đoạn thẳng, tính số đo góc. Dạng 3. Chứng minh hai đường thẳng song song hoặc vuông góc. Dạng 4. Tìm xem một điểm di động trên đường thẳng nào. CHƯƠNG 2 . ĐA GIÁC. DIỆN TÍCH ĐA GIÁC Chủ đề 1 . ĐA GIÁC. ĐA GIÁC ĐỀU Dạng 1. Tính góc của đa giác. Dạng 2. Tính đường chéo của đa giác. Dạng 3. Tính góc của đa giác đều. Chủ đề 2 . DIỆN TÍCH HÌNH CHỮ NHẬT. DIỆN TÍCH TAM GIÁC Dạng 1. Cắt ghép hình. Dạng 2. Tính diện tích hình chữ nhật, tam giác. Dạng 3. Chứng minh về diện tích. Dạng 4. Tính độ dài đoạn thẳng bằng công thức diện tích. Dạng 5. Sử dụng diện tích để chứng minh. Dạng 6. Tìm vị trí của điểm để thỏa mãn một đẳng thức về diện tích. Dạng 7. Tìm giá trị lớn nhất, giá trị nhỏ nhất của diện tích một hình. Chủ đề 3 . DIỆN TÍCH HÌNH THANG. DIỆN TÍCH HÌNH THOI Dạng 1. Tính diện tích hình thang, hình bình hành, hình thoi. Dạng 2. Chứng minh đẳng thức diện tích. Dạng 3. Tính toán và chứng minh đẳng thức diện tích. Chủ đề 4 . DIỆN TÍCH ĐA GIÁC Dạng 1. Tính diện tích đa giác. Dạng 2. Cắt ghép hình có diện tích bằng diện tích hình đã cho. Dạng 3. Chứng minh bất đẳng thức diện tích. Chủ đề 5 . ÔN TẬP CHƯƠNG II Dạng 1. Tính số cạnh và số đo của đa giác. Dạng 2. Tính diện tích đa giác. Dạng 3. Chứng minh về diện tích đa giác. Dạng 4. Sử dụng diện tích đa giác để giải toán. CHƯƠNG 3 . TAM GIÁC ĐỒNG DẠNG Chủ đề 1 . ĐỊNH LÍ TA-LÉT TRONG TAM GIÁC Dạng 1. Tìm tỉ số của các đoạn thẳng. Dạng 2. Tính độ dài đoạn thẳng. Dạng 3. Chứng minh các hệ thức. Chủ đề 2 . ĐỊNH LÍ ĐẢO VÀ HỆ QUẢ CỦA ĐỊNH LÍ TA-LÉT Dạng 1. Sử dụng hệ quả của định lí Ta-lét để tính độ dài đoạn thẳng. Dạng 2. Sử dụng hệ quả của định lí Ta-lét để chứng minh các hệ thức. Dạng 3. Chứng minh hai đường thẳng song song. Chủ đề 3 . TÍNH CHẤT ĐƯỜNG PHÂN GIÁC CỦA TAM GIÁC Dạng 1. Tính độ dài đoạn thẳng. Dạng 2. Chứng minh hệ thức hình học. Dạng 3. Liên quan đến tỉ số diện tích tam giác. Chủ đề 4 . KHÁI NIỆM HAI TAM GIÁC ĐỒNG DẠNG – TRƯỜNG HỢP ĐỒNG DẠNG THỨ NHẤT Dạng 1. Tìm tỉ số đồng dạng của hai tam giác. Dạng 2. Tính độ dài đoạn thẳng. Dạng 3. Chứng minh hai tam giác đồng dạng. Chủ đề 5 . TRƯỜNG HỢP ĐỒNG DẠNG THỨ HAI Dạng 1. Chứng minh hai tam giác đồng dạng. Dạng 2. Tính độ dài đoạn thẳng. Dạng 3. Nhận biết hai tam giác đồng dạng để tính góc. Chủ đề 6 . TRƯỜNG HỢP ĐỒNG DẠNG THỨ BA Dạng 1. Chứng minh hai tam giác đồng dạng. Dạng 2. Chứng minh hệ thức hình học. Dạng 3. Tính độ dài đoạn thẳng. CHƯƠNG 4 . HÌNH LĂNG TRỤ ĐỨNG HÌNH CHÓP ĐỀU Chủ đề 1 . CÁC TRƯỜNG HỢP ĐỒNG DẠNG CỦA TAM GIÁC VUÔNG ỨNG DỤNG THỰC TẾ CỦA TAM GIÁC ĐỒNG DẠNG Dạng 1. Chứng minh hai tam giác vuông đồng dạng. Dạng 2. Tính độ dài đoạn thẳng. Dạng 3. Chứng minh hệ thức hình học. Dạng 4. Tính diện tích đa giác. Dạng 5. Ứng dụng thực tế của tam giác đồng dạng. Chủ đề 2 . ÔN TẬP CHƯƠNG Dạng 1. Tính độ dài đoạn thẳng. Dạng 2. Tính tỉ số, diện tích và tỉ số diện tích. Dạng 3. Chứng minh đoạn thẳng bằng nhau. Dạng 4. Tính tỉ số của hai đường thẳng. Chủ đề 3 . HÌNH HỘP CHỮ NHẬT Dạng 1. Xác định vị trí của hai đường thẳng trong không gian. Dạng 2. Chứng minh đường thẳng song song với mặt phẳng. Chứng minh hai mặt phẳng song song. Dạng 3. Tìm giao tuyến của hai mặt phẳng. Chủ đề 4 . THỂ TÍCH CỦA HÌNH HỘP CHỮ NHẬT Dạng 1. Chứng minh đường thẳng vuông góc với mặt phẳng. Dạng 2. Chứng minh hai mặt phẳng vuông góc. Dạng 3. Tính diện tích xung quanh, diện tích toàn phần, thể tích và một số yếu tố khác của hình hộp chữ nhật. Chủ đề 5 . HÌNH LĂNG TRỤ ĐỨNG Dạng 1. Tìm số mặt, số đỉnh, số cạnh của hình lăng trụ đứng. Dạng 2. Tìm các yếu tố song song, vuông góc trong hình lăng trụ đứng. Dạng 3. Tính diện tích xung quanh, diện tích toàn phần, thể tích và một số yếu tố của hình lăng trụ đứng. Chủ đề 6 . HÌNH CHÓP ĐỀU Dạng 1. Tính số mặt, số đỉnh, số cạnh, của một hình chóp đều. Dạng 2. Chứng minh các quan hệ song song, vuông góc bằng nhau trong hình chóp đều. Dạng 3. Tính diện tích xung quanh, diện tích toàn phần, thể tích và một số yếu tố của hình chóp đều. Chủ đề 7 . ÔN TẬP CHƯƠNG Dạng 1. Xác định vị trí của đường thẳng với mặt phẳng, của hai mặt phẳng. Dạng 2. Tính số mặt, số đỉnh, số cạnh của hình lăng trụ đứng, hình chóp đều. Dạng 3. Tính diện tích xung quanh, diện tích toàn phần, thể tích và một số yếu tố của hình hộp chữ nhật, hình lăng trụ đứng, hình chóp đều.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề những hằng đẳng thức đáng nhớ
Tài liệu gồm 19 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề những hằng đẳng thức đáng nhớ, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 8 chương 1: Phép nhân và phép chia các đa thức. A. LÝ THUYẾT 1. Bình phương của một tổng. 2. Bình phương của một hiệu. 3. Hiệu hai bình phương. 4. Lập phương của một tổng. 5. Lập phương của một hiệu. 6. Tổng hai lập phương. 7. Hiệu hai lập phương. Hệ quả : 1. Tổng hai bình phương. 2. Tổng hai lập phương. 3. Bình phương của tổng ba số hạng. 4. Lập phương của tổng ba số hạng. B. CÁC DẠNG BÀI TẬP MINH HỌA CƠ BẢN Dạng 1 : Biến đổi biểu thức. Áp dụng 7 hằng đẳng thức đáng nhớ để thực hiện biến đổi biểu thức. Dạng 2 : Tính giá trị biểu thức. Dạng bài toán này rất đa dạng ta có thể giải theo phương pháp cơ bản như sau: + Biến đổi biểu thức cho trước thành những biểu thức cần thiết sao cho phù hợp với biểu thức cần tính giá trị. + Áp dụng 7 hằng đẳng thức đáng nhớ để thực hiện biến đổi biểu thức cần tính giá trị về biểu thức có liên quan đến giá trị đề bài đã cho. + Thay vào biểu thức cần tính tìm được giá trị. Dạng 3 : Tìm giá trị lớn nhất, giá trị nhỏ nhất. + Giá trị lớn nhất của biểu thức A(x). Áp dụng bất đẳng thức ta biến đổi được về dạng: m – Q2(x) =< m (với m là hằng số), suy ra GTLN của A(x) là m. + Giá trị nhỏ nhất của biểu thức A(x). Áp dụng bất đẳng thức ta biến đổi được về dạng: n + Q2(x) >= n (với n là hằng số), suy ra GTNN của A(x) là n. C. CÁC DẠNG BÀI TẬP MINH HỌA NÂNG CAO TỔNG HỢP D. PHIẾU BÀI TỰ LUYỆN
Chuyên đề nhân đơn thức với đa thức, nhân đa thức với đa thức
Tài liệu gồm 13 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề nhân đơn thức với đa thức, nhân đa thức với đa thức, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 8 chương 1: Phép nhân và phép chia các đa thức. A. TRỌNG TÂM CẦN ĐẠT I. Lý thuyết 1. Nhân đơn thức với đa thức: Muốn nhân một đơn thức với một đa thức, ta nhân đơn thức đó với từng hạng tử của đa thức rồi cộng các tích với nhau. 2. Nhân đa thức với đa thức: Muốn nhân một đa thức với một đa thức, ta nhân mỗi hạng tử của đa thức này với từng hạng tử của đa thức kia rồi cộng các tích với nhau. II. Các dạng bài tập + Dạng 1: Thực hiện phép tính. Áp dụng quy tắc nhân đơn thức với đa thức và quy tắc nhân đa thức với đa thức để thực hiện phép tính. + Dạng 2: Tìm x với điều kiện cho trước. Áp dụng quy tắc nhân đơn thức với đa thức và quy tắc nhân đa thức với đa thức để tìm giá trị x. B. NÂNG CAO PHÁT TRIỂN TƯ DUY C. PHIẾU BÀI TỰ LUYỆN + Dạng 1: Rút gọn biểu thức. + Dạng 2: Tìm giá trị chưa biết. + Dạng 3: Tính giá trị biểu thức. + Dạng 4: Chứng minh giá trị biểu thức không phụ thuộc vào biến. + Dạng 5: Bài toán nâng cao.
Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp
Tài liệu gồm 24 trang, được biên soạn bởi thầy giáo Nguyễn Ngọc Dũng, hướng dẫn phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp, giúp học sinh học tốt chương trình Toán 8. A. TÓM TẮT LÍ THUYẾT Khi phân tích đa thức thành nhân tử, nếu cần ta phải phối hợp nhiều phương pháp để phân tích được triệt để. Các phương pháp thông thường: + Phương pháp ưu tiên số một là đặt nhân tử chung. + Phương pháp ưu tiên số hai là dùng hằng đẳng thức. + Cuối cùng là nhóm các hạng tử. Mục đích của việc nhóm các hạng tử nhằm làm cho quá trình phân tích đa thức thành nhân tử được tiếp tục bằng cách đặt nhân tử chung hoặc dùng hằng đẳng thức. Ngoài ra, ta còn có thể sử dụng các phương pháp nâng cao sau: + Phương pháp tách một hạng tử thành nhiều hạng tử. + Phương pháp thêm và bớt cùng một hạng tử. + Phương pháp đổi biến. B. CÁC DẠNG TOÁN DẠNG 1 . Phối hợp các phương pháp thông thường. + Một số bài toán, nếu chỉ áp dụng một phương pháp thì ta không thể phân tích thành nhân tử được vì vậy ta phải kết hợp hai hoặc cả ba phương pháp đã nêu. + Khi phối phợp nhiều phương pháp, thông thường phương pháp đặt nhân tử chung được ưu tiên đầu tiên rồi đến nhóm hạng tử và hằng đẳng thức, một phương pháp có thể dùng nhiều lần. DẠNG 2 . Phương pháp tách một hạng tử thành nhiều hạng tử. + Tách các hạng tử của đa thức thành tổng hoặc hiệu của nhiều hạng tử, từ đó ta ghép cặp để được các nhóm hạng tử giống nhau và làm xuất hiện nhân tử chung. + Cách tổng quát để phân tích đa thức bậc hai ax2 + bx + c thành nhân tử là: • Tách bx thành b1x + b2x sao cho b1·b2 = ac. • Đặt nhân tử chung theo từng nhóm. + Đối với đa thức bậc ba trở lên thì tùy theo đặc điểm của các hệ số mà có cách tách riêng cho phù hợp. Một thủ thuật của loại này là dùng máy tính cầm tay nhẩm một nghiệm (thường là nghiệm nguyên, giả sử là x0), khi đó ta tìm cách ghép cặp làm sao cho xuất hiện nhân tử (x − x0) là được. DẠNG 3 . Phương pháp thêm bớt cùng một hạng tử. Khi phân tích đa thức thành nhân tử, đôi khi ta cần tăng thêm các hạng tử của đa thức bằng cách thêm và bớt cùng một hạng tử. Có hai cách thêm bớt thương gặp như sau: + Thêm và bớt cùng một hạng tử làm xuất hiện hiệu của hai bình phương. + Thêm và bớt cùng một hạng tử làm xuất hiện nhân tử chung. DẠNG 4 . Phương pháp đổi biến. + Khi gặp một đa thức phức tạp, ta nên dùng cách đặt ẩn phụ (thay một đa thức của biến cũ bằng một biến mới để được một đa thức đơn giản hơn, dễ phân tích hơn). + Sau khi phân tích với biến mới, ta thay trở lại biến cũ để phân tích tiếp (nếu được). DẠNG 5 . Tìm x thỏa một đẳng thức cho trước. Một tích bằng 0 khi một trong các nhân tử của nó bằng 0. Ta thực hiện theo các bước sau: + Chuyển tất cả sang vế trái để vế phải bằng 0. + Phân tích đa thức thành nhân tử để đưa về dạng tích. + Cho một trong các nhân tử bằng 0 và tìm x.
Lý thuyết và bài tập chuyên đề tứ giác - Nguyễn Tất Thu
Tài liệu gồm 32 trang, được biên soạn bởi thầy giáo Nguyễn Tất Thu, tổng hợp lý thuyết và bài tập chuyên đề tứ giác, giúp học sinh học tốt chương trình Hình học 8 chương 1. Bài 1 . TỨ GIÁC. 1. Tứ giác. 2. Tứ giác lồi. Bài 2 . HÌNH THANG. 1. Hình thang. 2. Hình thang cân. 3. Đường trung bình của tam giác. 4. Đường trung bình của hình thang. Bài 3 . HÌNH BÌNH HÀNH. 1. Định nghĩa. 2. Tính chất. 3. Dấu hiệu nhận biết. Bài 4 . HÌNH CHỮ NHẬT. 1. Định nghĩa. 2. Tính chất. Bài 5 . HÌNH THOI. 1. Định nghĩa. 2. Tính chất. 3. Dấu hiệu nhận biết. Bài 6 . HÌNH VUÔNG.