Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn học sinh giỏi tỉnh lớp 12 môn Toán năm 2021 2022 sở GD ĐT Nghệ An

Nội dung Đề thi chọn học sinh giỏi tỉnh lớp 12 môn Toán năm 2021 2022 sở GD ĐT Nghệ An Bản PDF Thứ Tư ngày 22 tháng 12 năm 2021, sở Giáo dục và Đào tạo tỉnh Nghệ An tổ chức kỳ thi chọn học sinh giỏi môn Toán lớp 12 cấp tỉnh năm học 2021 – 2022. Đề thi chọn học sinh giỏi tỉnh Toán lớp 12 năm 2021 – 2022 sở GD&ĐT Nghệ An được biên soạn theo hình thức đề thi tự luận, đề gồm 01 trang với 05 bài toán, thời gian làm bài 150 phút. Trích dẫn đề thi chọn học sinh giỏi tỉnh Toán lớp 12 năm 2021 – 2022 sở GD&ĐT Nghệ An : + Cho hàm số bậc ba y = f(x) có đồ thị như hình vẽ bên. Tìm số điểm cực trị của hàm số g(x). + Trong quá trình truy vết lịch sử tiếp xúc của bệnh nhân Covid-19 ở một trường học, trung tâm y tế xác định được 3 giáo viên và một số học sinh có sự liên quan đến bệnh nhân đó. Người ta chọn ngẫu nhiên 10 người trong số các giáo viên và học sinh liên quan để làm xét nghiệm gộp. Biết rằng xác suất để trong 10 người được chọn có 3 giáo viên bằng 6 lần xác suất trong 10 người được chọn đều là học sinh. Tính xác suất để trong 10 người được chọn làm xét nghiệm có nhiều nhất 2 giáo viên. + Cho a, b, c là các số thực không âm thay đổi thỏa mãn điều kiện. Tìm giá trị lớn nhất của biểu thức P = 2a3 + b3 + c3.

Nguồn: sytu.vn

Đọc Sách

Đề thi chọn học sinh giỏi Toán 12 năm 2023 - 2024 sở GDĐT Nam Định
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi môn Toán 12 THPT năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Nam Định; đề thi có đáp án và hướng dẫn chấm điểm mã đề 101 – 102 – 103 – 104. Trích dẫn Đề thi chọn học sinh giỏi Toán 12 năm 2023 – 2024 sở GD&ĐT Nam Định : + Cho hình chóp S.ABC có SA vuông góc với mặt phẳng (ABC), BAC = 90◦ và SA = BC. Gọi E, F lần lượt là hình chiếu vuông góc của A lên SB, SC; M là trung điểm của SA và G là trọng tâm của tam giác ABC. Tính tỉ số V1 V2 với V1, V2 lần lượt là thể tích của các khối tứ diện MAEF và AEF G. + Cho hình tứ diện ABCD có AB, AC, AD đôi một vuông góc với nhau và có độ dài cùng bằng 2a. Gọi E và F lần lượt là trung điểm BC, BD. Tính thể tích của khối chóp A.EF DC. + Cho đa giác đều (H) có 24 đỉnh, chọn ngẫu nhiên 4 đỉnh của hình (H). Tính xác suất để 4 đỉnh được chọn tạo thành một hình chữ nhật không phải là hình vuông.
Đề thi chọn học sinh giỏi Toán THPT năm 2023 - 2024 sở GDĐT Sơn La
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi môn Toán THPT năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Sơn La; đề thi có đáp án trắc nghiệm và hướng dẫn chấm điểm tự luận mã đề 201 202 203 204 205 206 207 208. Trích dẫn Đề thi chọn học sinh giỏi Toán THPT năm 2023 – 2024 sở GD&ĐT Sơn La : + Một hộp đựng 5 quả cầu trắng, 7 quả cầu đen. Lần thứ nhất lấy ngẫu nhiên 1 quả cầu trong hộp, lần thứ hai lấy ngẫu nhiên 1 quả cầu trong các quả cầu còn lại. Xác suất để kết quả của hai lần lấy được 2 quả cầu cùng màu bằng? + Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh 3 cm. Mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Thể tích khối nón có đường tròn đáy nội tiếp tam giác SAB và đỉnh nằm trên cạnh SC bằng? + Trong mặt phẳng tọa độ Oxy cho hình chữ nhật ABCD có AB BC 2. Gọi M N lần lượt là trung điểm của AB CD. Đường thẳng BN cắt đường thẳng AC tại điểm E (5;3). Phương trình đường thẳng CM là x y 9. Tìm tọa độ điểm C.
Đề thi thử HSG lần 3 Toán 12 năm 2023 - 2024 trường THPT Trần Văn Lan - Nam Định
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử học sinh giỏi lần 3 môn Toán 12 năm học 2023 – 2024 trường THPT Trần Văn Lan, tỉnh Nam Định; đề thi gồm 40 câu trắc nghiệm một lựa chọn và 20 câu ghi đáp án, thời gian làm bài 120 phút, có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi thử HSG lần 3 Toán 12 năm 2023 – 2024 trường THPT Trần Văn Lan – Nam Định : + Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật và AB = 2a, BC = a. Các cạnh bên của hình chóp bằng nhau và bằng a 2. Gọi E và F lần lượt là trung điểm của AB và CD; K là điểm bất kỳ trên AD. Tính khoảng cách giữa hai đường thẳng EF và SK. + Cho hình trụ T có hai hình tròn đáy là O và O. Xét hình nón N có đỉnh O đáy là hình tròn O và đường sinh hợp với đáy một góc. Biết tỉ số giữa diện tích xung quanh hình trụ T và diện tích xung quanh hình nón N bằng 3. Tính số đo góc. + Ông Tuấn gửi 9,8 triệu đồng tiết kiệm với lãi suất 8,4%/năm và lãi suất hàng năm được nhập vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm ông Tuấn thu được tổng số tiền 20 triệu đồng (biết rằng lãi suất không thay đổi).