Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát lần 1 Toán 10 năm 2023 - 2024 trường THPT Thuận Thành 1 - Bắc Ninh

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề khảo sát chất lượng lần 1 môn Toán 10 năm học 2023 – 2024 trường THPT Thuận Thành số 1, tỉnh Bắc Ninh; đề thi có đáp án trắc nghiệm mã đề 111 – 112 – 113 – 114 – 115 – 116 – 117 – 118. Trích dẫn Đề khảo sát lần 1 Toán 10 năm 2023 – 2024 trường THPT Thuận Thành 1 – Bắc Ninh : + Một doanh nghiệp tư nhân A chuyên kinh doanh xe máy các loại. Hiện nay doanh nghiệp đang tập trung chiến lược vào kinh doanh xe Hon đa Lead 2024 Smartkey bản đen mờ với chi phí mua vào một chiếc là 37 triệu đồng và bán ra là 41 triệu đồng. Với giá bán này thì số lượng xe mà khách hàng sẽ mua trong một tháng là 60 chiếc. Nhằm mục tiêu đẩy mạnh hơn nữa lượng tiêu thụ dòng xe đang ăn khách này, doanh nghiệp dự định giảm giá bán và ước tính rằng nếu giảm 1 triệu đồng mỗi chiếc xe thì số lượng xe bán ra trong một tháng sẽ tăng thêm 20 chiếc. Vậy doanh nghiệp phải định giá bán mới là bao nhiêu để sau khi đã thực hiện giảm giá, lợi nhuận thu được sẽ là cao nhất. + Trong đợt hội trại “Khi tôi 18” được tổ chức tại trường THPT X, Đoàn trường có thực hiện một dự án ảnh trưng bày trên 1 pano có dạng parabol như hình vẽ. Biết rằng Đoàn trường sẽ yêu cầu các lớp gửi hình dự thi và dán lên khu vực hình chữ nhật ABCD có kích thước AB = 2m, AD = 3m, phần còn lại sẽ được trang trí hoa văn cho phù hợp và pano được đặt sao cho cạnh CD tiếp xúc với mặt đất. Hỏi vị trí cao nhất của pano so với mặt đất là bao nhiêu? + Trong một cuộc thi gói bánh vào dịp năm mới, mỗi đội chơi được sử dụng tối đa 20 kg gạo nếp, 2 kg thịt ba chỉ, 5 kg đậu xanh để gói bánh chưng và bánh ống. Để gói một cái bánh chưng cần 0,4 kg gạo nếp, 0,05 kg thịt và 0,1 kg đậu xanh; để gói một cái bánh ống cần 0,6 kg gạo nếp, 0,075 kg thịt và 0,15 kg đậu xanh. Mỗi cái bánh chưng nhận được 5 điểm thưởng, mỗi cái bánh ống nhận được 7 điểm thưởng. Hỏi điểm thưởng cao nhất có thể đạt được là bao nhiêu?

Nguồn: toanmath.com

Đọc Sách

Đề kiểm định Toán 10 lần 2 năm 2020 - 2021 trường THPT Yên Phong 2 - Bắc Ninh
Thứ Bảy ngày 24 tháng 04 năm 2021, trường THPT Yên Phong số 2, tỉnh Bắc Ninh tổ chức kỳ thi kiểm định chất lượng môn Toán lớp 10 năm học 2020 – 2021 lần thứ hai. Đề kiểm định Toán 10 lần 2 năm 2020 – 2021 trường THPT Yên Phong 2 – Bắc Ninh được biên soạn theo hình thức đề 30% trắc nghiệm + 70% tự luận, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề kiểm định Toán 10 lần 2 năm 2020 – 2021 trường THPT Yên Phong 2 – Bắc Ninh : + Trong mặt phẳng Oxy, cho ba điểm. a) Viết phương trình tổng quát của đường thẳng ∆ đi qua trung điểm I của AB và vuông góc với BC. b) Tìm giao điểm của đường thẳng ∆ với các trục tọa độ. c) Tìm điểm M thuộc ∆ và cách đều hai điểm A C. + Cho các số thực a b c sao cho tồn tại tam giác có độ dài ba cạnh là a b c và chu vi bằng 2 (cùng đơn vị đo). Chứng minh rằng. + Hình vẽ sau đây là đồ thị của hàm số nào trong bốn hàm số cho ở các đáp án A, B, C, D?
Đề kiểm tra Toán 10 lần 2 năm 2020 - 2021 trường Hàn Thuyên - Bắc Ninh
Đề kiểm tra Toán 10 lần 2 năm học 2020 – 2021 trường THPT Hàn Thuyên, tỉnh Bắc Ninh gồm 05 trang với 50 câu trắc nghiệm, thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án mã đề 132, 209, 357, 485, 570, 628, 743, 896. Trích dẫn đề kiểm tra Toán 10 lần 2 năm 2020 – 2021 trường Hàn Thuyên – Bắc Ninh : + Cổng vào thành phố X có hình dạng xem như một Parabol (hình vẽ). Trên thành cổng, tại vị trí cao 45m so với mặt đất (tại điểm M thuộc cung AB), người ta thả một sợi dây chạm đất (dây căng thẳng theo phương vuông góc với mặt đất), vị trí chạm mặt đất của đầu sợi dây cách chân cổng đoạn 10m. Xác định chiều cao của cổng tính từ mặt đất đến điểm cao nhất của cổng. + Trong hệ trục tọa độ Oxy, cho u(3;2), v(0;1). Tập hợp điểm M thoả mãn khi m thay đổi là: A. Đường thẳng có phương trình (d): x 3y 3 0. B. đường thẳng có phương trình (d): 3x y 1 0. C. đường thẳng có phương trình (d): 2x 3y 0. D. đường thẳng có phương trình (d): y 0. + Trong hệ trục tọa độ Oxy, cho đường thẳng (d) có phương trình: x y 1 2 3. Khi đó, số mệnh đề đúng trong các mệnh đề dưới đây là: 1) (d) có một véc tơ pháp tuyến là n(2;3). 2) (d) cắt trục Ox tại điểm A(2;0). 3) (d) cắt trục Oy tại điểm B(0;3). 4) (d) có một véc tơ pháp tuyến là (6;4).
Đề khảo sát Toán 10 lần 1 năm 2020 - 2021 trường Tiên Du 1 - Bắc Ninh
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề khảo sát chất lượng Toán 10 lần 1 năm học 2020 – 2021 trường THPT Tiên Du số 1, tỉnh Bắc Ninh; đề được biên soạn theo hình thức đề 50% trắc nghiệm + 50% tự luận, thời gian làm bài 90 phút. Trích dẫn đề khảo sát Toán 10 lần 1 năm 2020 – 2021 trường Tiên Du 1 – Bắc Ninh : + Với H, K là các mệnh đề và có một định lý được phát biểu dưới dạng “Nếu H thì K”. Khẳng định nào sau đây là đúng? A. H là điều kiện cần để có K. B. K không là điều kiện cần để có H. C. K là điều kiện đủ để có H. D. H là điều kiện đủ để có K. + Cho hình vuông ABCD có cạnh bằng a. Gọi điểm M là trung điểm của cạnh AB. Gọi điểm N thỏa mãn AN = 3/4.AC. Chứng minh rằng: MN.ND = 0. + Cho phương trình 3√(x2 – 2x + 3) = x2 – 2x + m với tham số m thuộc R. Tìm tất cả các giá trị của tham số m để phương trình đã cho có đúng hai nghiệm phân biệt thuộc đoạn [0;3].
Đề kiểm tra Toán 10 lần 1 năm 2020 - 2021 trường THPT Lý Thái Tổ - Bắc Ninh
Đề kiểm tra chất lượng Toán 10 lần 1 năm học 2020 – 2021 trường THPT Lý Thái Tổ – Bắc Ninh gồm 01 trang với 07 câu tự luận, thời gian làm bài 90 phút, kỳ thi được diễn ra vào Chủ Nhật ngày 17 tháng 01 năm 2021, đề thi có lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề kiểm tra Toán 10 lần 1 năm 2020 – 2021 trường THPT Lý Thái Tổ – Bắc Ninh : + Một người cần phải làm cái cửa sổ mà phía trên là hình bán nguyệt, phía dưới là hình chữ nhật, có chu vi là 8 ( là chu vi hình bán nguyệt cộng với chu vi hình chữ nhật trừ đi độ dài cạnh hình chữ nhật là đường kính của hình bán nguyệt). Hãy xác định các kích thước của của hình chữ nhật để diện tích cửa sổ là lớn nhất. + Tìm tập xác định của các hàm số sau. + Trong mặt phẳng với hệ trục tọa độ Oxy, cho ba điểm A(1;-1), B(3;2), C(1;-4). 1) Chứng minh A, B, C là ba đỉnh của một tam giác. Tính độ dài trung tuyến AM của tam giác ABC. 2) Tìm tọa độ trực tâm H của tam giác ABC.