Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp

Nội dung Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp Bản PDF - Nội dung bài viết Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp Trên thực tế, khi chúng ta phân tích đa thức thành nhân tử, đôi khi cần phải kết hợp nhiều phương pháp để có thể phân tích triệt để. Có nhiều phương pháp thông thường mà chúng ta có thể áp dụng, bao gồm: Phương pháp ưu tiên số một: Đặt nhân tử chung. Khi sử dụng phương pháp này, chúng ta cố gắng tìm một nhân tử chung cho các hạng tử của đa thức để dễ dàng phân tích. Phương pháp ưu tiên số hai: Sử dụng hằng đẳng thức. Chúng ta có thể sử dụng hằng đẳng thức để phân tích đa thức thành nhân tử, giúp quá trình phân tích trở nên hiệu quả hơn. Nhóm các hạng tử. Khi chúng ta nhóm các hạng tử lại với nhau, việc phân tích trở nên dễ dàng hơn bằng cách đặt nhân tử chung hoặc sử dụng hằng đẳng thức. Ngoài ra, chúng ta cũng có thể áp dụng các phương pháp nâng cao khác như: Tách một hạng tử thành nhiều hạng tử. Bằng cách này, chúng ta có thể tách một hạng tử thành nhiều hạng tử để dễ dàng phân tích đa thức thành nhân tử. Thêm và bớt cùng một hạng tử. Đôi khi, chúng ta cần tăng thêm hoặc bớt đi các hạng tử để phân tích đa thức, giúp quá trình phân tích trở nên linh hoạt hơn. Đổi biến. Khi gặp đa thức phức tạp, chúng ta có thể sử dụng cách đổi biến để đơn giản hóa đa thức trước khi phân tích thành nhân tử. Thông qua việc kết hợp các phương pháp phân tích, chúng ta có thể giải quyết các bài toán phức tạp và hiệu quả hơn trong quá trình học Toán lớp 8.

Nguồn: sytu.vn

Đọc Sách

Hướng dẫn ôn tập học kì 2 Toán 8 năm 2020 - 2021 trường Vinschool - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 8 đề cương hướng dẫn ôn tập học kì 2 Toán 8 năm học 2020 – 2021 trường Vinschool – Hà Nội, nhằm giúp các em rèn luyện, chuẩn bị cho kỳ kiểm tra khảo sát chất lượng môn Toán 8 giai đoạn cuối học kỳ 2 năm học 2020 – 2021. I. KIẾN THỨC TRỌNG TÂM Phương trình: – Phương trình tương đương. – Định nghĩa phương trình bậc nhất một ẩn. – Hai quy tắc biến đổi phương trình. – Cách giải phương trình bậc nhất một ẩn, phương trình đưa được về dạng bậc nhất một ẩn, phương trình tích, phương trình chứa ẩn ở mẫu. – Cách giải phương trình chứa dấu giá trị tuyệt đối. Bất phương trình: – Tập nghiệm của bất phương trình. – Bất phương trình tương đương. – Định nghĩa bất phương trình bậc nhất một ẩn. – Hai quy tắc biến đổi bất phương trình. – Cách giải bất phương trình bậc nhất một ẩn, bất phương trình đưa được về dạng bậc nhất một ẩn. Giải bài toán bằng cách lập phương trình: – Các bước giải bài toán bằng cách lập phương trình. – Các dạng toán giải bằng cách lập phương trình: chuyển động, năng suất, số và chữ số, phần trăm, hình học. Bất đẳng thức: – Mối liên hệ giữa thứ tự và phép tính (phép cộng, phép nhân). – Chứng minh bất đẳng thức. – Tìm giá trị lớn nhất, giá trị nhỏ nhất. Định lí Ta-let. Tính chất đường phân giác: – Định lí Ta-lét, định lí đảo và hệ quả của định lí Ta-lét. – Tính chất đường phân giác của tam giác. Tam giác đồng dạng: – Khái niệm hai tam giác đồng dạng. – Các trường hợp đồng dạng của tam giác, tam giác vuông. Hình học không gian: – Khái niệm hình hộp chữ nhật, hình lập phương, hình lăng trụ đứng. – Các công thức tính diện tích xung quanh, diện tích toàn phần, thể tích của hình hộp chữ nhật, hình lập phương, hình lăng trụ đứng. II. BÀI TẬP MINH HỌA
Chuyên đề diện tích xung quanh và thể tích của hình chóp đều
Tài liệu gồm 12 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề diện tích xung quanh và thể tích của hình chóp đều, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 4: Hình lăng trụ đứng, hình chóp đều. A. BÀI GIẢNG CỦNG CỐ KIẾN THỨC NỀN 1. Công thức tính diện tích, thể tích hình chóp đều. 2. Công thức tính diện tích, thể tích hình chóp cụt đều. B. VÍ DỤ MINH HỌA C. PHIẾU BÀI TỰ LUYỆN 1. Dạng toán đại lượng hình học. 2. Dạng toán chứng minh.
Chuyên đề hình chóp đều, hình chóp cụt đều
Tài liệu gồm 11 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề hình chóp đều, hình chóp cụt đều, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 4: Hình lăng trụ đứng, hình chóp đều. A. Bài giảng củng cố kiến thức nền 1. Hình chóp: Hình chóp là hình có mặt đáy là một đa giác và các mặt bên là các tam giác có chung đỉnh. 2. Hình chóp đều: Hình chóp đều là hình chóp có đáy là một đa giác đều, các mặt bên là tam giác cân bằng nhau có chung đỉnh. 3. Hình chóp cụt đều: Cắt một hình chóp đều bằng một mặt phẳng song song với đáy, phần hình chóp nằm giữa mặt phẳng đó và mặt phẳng đáy là một hình chóp cụt đều. B. Phương pháp giải toán C. Phiếu bài tự luyện Dạng 1: Biến đổi công thức tính các đại lượng. Dạng 2: Những bài toán về tự luận.
Chuyên đề diện tích xung quanh và thể tích của hình lăng trụ đứng
Tài liệu gồm 09 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề diện tích xung quanh và thể tích của hình lăng trụ đứng, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 4: Hình lăng trụ đứng, hình chóp đều.