Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phân dạng và bài tập lớp 8 môn Toán

Nội dung Phân dạng và bài tập lớp 8 môn Toán Bản PDF - Nội dung bài viết Phân dạng và bài tập lớp 8 môn ToánI. Đại sốChương 1: Phép nhân và phép chia các đa thứcChương 2: Phân thức đại sốII. Hình họcChương 1: Tứ giácChương 2: Đa giác - Diện tích đa giác Phân dạng và bài tập lớp 8 môn Toán Tài liệu này bao gồm 106 trang, được tổng hợp bởi thầy giáo Võ Hoàng Nghĩa và cô giáo Nguyễn Thị Hồng Loan, chủ yếu tập trung vào phân dạng và bài tập Toán cho học sinh lớp 8. Cụ thể, nội dung của sách được chia thành các phần sau: I. Đại số Chương 1: Phép nhân và phép chia các đa thức Đồng thời học sinh sẽ tìm hiểu về cách nhân đơn thức với đa thức và nhân đa thức với đa thức. Cung cấp tóm tắt về lí thuyết và bài tập áp dụng cho các dạng bài tập như nhân đơn thức với đa thức, nhân đa thức với đa thức, chứng minh biểu thức và tìm x. Chương 2: Phân thức đại số Học sinh sẽ được hướng dẫn cách tìm điều kiện để phân thức có nghĩa và bài tập liên quan đến rút gọn phân thức. Bao gồm cả các phép toán về phân thức như qui đồng mẫu thức, cộng trừ phân thức, nhân chia phân thức và tính giá trị của một phân thức. II. Hình học Chương 1: Tứ giác Nhắc lại về các tính chất cơ bản của tứ giác và bài tập áp dụng để tính toán các góc và cạnh của tứ giác. Chương 2: Đa giác - Diện tích đa giác Học sinh sẽ được ôn tập về đa giác và giải các bài tập tự luận liên quan đến diện tích đa giác. Đây là một tài liệu học hữu ích, được biên soạn một cách cụ thể và dễ hiểu bởi thầy giáo và cô giáo có kinh nghiệm trong lĩnh vực giáo dục. Các bài tập cũng được sắp xếp logic và có đa dạng để học sinh có thể nắm vững kiến thức và rèn luyện kỹ năng Toán của mình.

Nguồn: sytu.vn

Đọc Sách

Chuyên đề phương trình chứa ẩn ở mẫu
Nội dung Chuyên đề phương trình chứa ẩn ở mẫu Bản PDF - Nội dung bài viết Chuyên đề phương trình chứa ẩn ở mẫu Chuyên đề phương trình chứa ẩn ở mẫu Tài liệu này bao gồm 16 trang, tóm tắt lý thuyết cơ bản về phương trình chứa ẩn ở mẫu, hướng dẫn cách phân dạng và giải các dạng toán liên quan. Bên cạnh đó, sách còn tuyển chọn các bài tập từ dễ đến khó để giúp học sinh nắm vững kiến thức. Mỗi bài tập đi kèm đều có đáp án và lời giải chi tiết, giúp học sinh tự tin trong quá trình học tập. Trước khi giải phương trình chứa ẩn ở mẫu, chúng ta cần nhớ các bước đơn giản sau: Bước 1: Tìm điều kiện xác định (ĐKXĐ) của phương trình. Bước 2: Quy đồng mẫu hai vế của phương trình. Bước 3: Giải phương trình đã quy đồng mẫu. Bước 4: Xác định nghiệm của phương trình từ các giá trị tìm được ở bước 3. Để minh họa phương pháp giải phương trình chứa ẩn ở mẫu, chúng ta sẽ vận dụng các bài tập cụ thể, biến đổi chúng thành phương trình bậc nhất để giải. Việc này sẽ giúp học sinh hiểu rõ hơn về cách giải quyết các bài toán đề xuất.
Chuyên đề phương trình tích
Nội dung Chuyên đề phương trình tích Bản PDF - Nội dung bài viết Chuyên Đề Phương Trình Tích Chuyên Đề Phương Trình Tích Tài liệu này bao gồm 17 trang, tóm tắt lý thuyết cần thiết về phương trình tích, phân tích dạng và hướng dẫn cách giải các dạng toán liên quan. Ngoài ra, tài liệu cũng tuyển chọn các bài tập từ cơ bản đến nâng cao trong chuyên đề phương trình tích. Để giải phương trình tích (một ẩn), chúng ta cần tìm nghiệm cho từng phần tử có thể làm cho toán tử bằng 0. Các phương pháp phân tích đa thức thành nhân tử đóng vai trò quan trọng trong việc đưa phương trình về dạng phương trình tích. Bên cạnh đó, việc đặt ẩn phụ cũng giúp cho quá trình lời giải trở nên gọn gàng hơn. Trong phần II, ta sẽ vận dụng các phương pháp phân tích thành nhân tử và cách giải phương trình tích để đưa phương trình đã cho về dạng phương trình bậc nhất đã biết cách giải. Bằng việc hiểu và áp dụng những kiến thức này, học sinh sẽ có thêm sự hỗ trợ trong quá trình học tập chương trình Đại số 8 chương 3: Phương trình bậc nhất một ẩn.
Chuyên đề mở đầu về phương trình
Nội dung Chuyên đề mở đầu về phương trình Bản PDF - Nội dung bài viết Chuyên đề mở đầu về phương trình Chuyên đề mở đầu về phương trình Tài liệu này bao gồm 18 trang chứa thông tin tóm tắt về lý thuyết cơ bản về phương trình như: phân dạng, cách giải các dạng toán, và các bài tập từ cơ bản đến nâng cao. Đặc biệt, tài liệu này được tuyển chọn kỹ lưỡng để hỗ trợ học sinh trong quá trình học tập chương trình Đại số lớp 8 chương 3: Phương trình bậc nhất một ẩn. Phần A của tài liệu này bao gồm bài giảng củng cố kiến thức cơ bản về phương trình, bao gồm các nội dung như phương trình một ẩn, cách giải phương trình, và phương trình tương đương. Phần B của tài liệu chứa các bài tập minh họa cơ bản trong đề tài này, bao gồm giải phương trình và hai phương trình tương đương. Phần C là phần bài tập nâng cao tổng hợp, giúp học sinh thử thách và nâng cao kiến thức về phương trình. Phần D chứa phiếu bài tập tự luyện, giúp học sinh tự kiểm tra và đánh giá kiến thức của mình sau khi học xong chuyên đề này.
Chuyên đề biến đổi các biểu thức hữu tỉ, giá trị của phân thức
Nội dung Chuyên đề biến đổi các biểu thức hữu tỉ, giá trị của phân thức Bản PDF - Nội dung bài viết Chuyên đề biến đổi các biểu thức hữu tỉ, giá trị của phân thức Chuyên đề biến đổi các biểu thức hữu tỉ, giá trị của phân thức Trong chuyên đề này, chúng ta sẽ tìm hiểu về cách biến đổi các biểu thức hữu tỉ và tính giá trị của phân thức. Để hiểu rõ hơn về chủ đề này, chúng ta cần nắm vững các kiến thức cơ bản sau: I. Biến đổi các biểu thức hữu tỉ: - Biểu thức hữu tỉ là một phân thức hoặc một dãy các phép toán được thực hiện trên các phân thức. - Để biến đổi một biểu thức hữu tỉ thành một phân thức, chúng ta cần áp dụng các quy tắc của phép toán cộng, trừ, nhân và chia trên các phân thức. II. Giá trị của phân thức: - Giá trị của một phân thức chỉ được xác định khi mẫu thức khác 0. - Đối với biểu thức hữu tỉ có hai biến x và y, giá trị của biểu thức chỉ được xác định khi có các cặp số (x; y) thỏa mãn mẫu thức khác 0. III. Bài tập và các dạng toán: Dạng 1: Tìm điều kiện xác định của phân thức. Chúng ta cần xác định giá trị của biến để mẫu thức không bằng 0. Dạng 2: Biến đổi biểu thức hữu tỉ thành phân thức. - Bước 1: Sử dụng quy tắc cộng, trừ, nhân và chia trên các phân thức để biến đổi. - Bước 2: Tiếp tục biến đổi đến khi có phân thức có dạng A/B với A, B là các đa thức và B khác 0. Dạng 3: Thực hiện phép tính với các biểu thức hữu tỉ. Sử dụng quy tắc phép toán đã học để biến đổi và tính giá trị của biểu thức. Dạng 4: Tìm x để giá trị của một phân thức thỏa mãn điều kiện cho trước. Sử dụng các kiến thức về giá trị phân thức, quy tắc dấu của các số và các hằng đẳng thức để giải bài toán. Thông qua việc hiểu rõ về các dạng toán và quy tắc trong chuyên đề này, chúng ta sẽ có thêm kiến thức và kỹ năng để giải các bài toán liên quan đến biến đổi biểu thức hữu tỉ và tính giá trị của phân thức.