Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HSG Toán 9 cấp huyện năm 2023 - 2024 phòng GDĐT Lập Thạch - Vĩnh Phúc

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 cấp huyện năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Lập Thạch, tỉnh Vĩnh Phúc. Trích dẫn Đề HSG Toán 9 cấp huyện năm 2023 – 2024 phòng GD&ĐT Lập Thạch – Vĩnh Phúc : + Cửa hàng bác Tuấn ở thị trấn Xuân Hòa huyện Lập Thạch chuyên bán cá thính (đặc sản của huyện Lập Thạch, tỉnh Vĩnh Phúc). Cửa hàng có hai hình thức đóng thùng, loại I mỗi thùng gồm 10 hộp cá thính và loại II mỗi thùng gồm 5 hộp cá thính. Trong tháng 9 vừa qua cửa hàng bán buôn được 60 thùng cá thính (gồm cả loại I và loại II) thu về tổng cộng 55 triệu đồng. Biết rằng giá bán mỗi thùng cá thính loại I tính theo triệu đồng là một số nguyên dương và gấp đôi giá bán mỗi thùng cá thính loại II. Hỏi giá bán mỗi thùng cá thính loại I là bao nhiêu triệu đồng? + Lần lượt lấy trên các cạnh AB, BC, CA của tam giác ABC các điểm P, M, N. Gọi S, S1, S2, S3 lần lượt là diện tích các tam giác ABC, APN, BMP, CMN. Chứng minh rằng: S1.S2.S3. + Cho một đa giác đều có 2023 đỉnh. Người ta ghi lên mỗi đỉnh của đa giác số 1 hoặc số 2. Biết rằng có 1013 số 1 và 1010 số 2 và các số trên 3 đỉnh liên tiếp bất kỳ không đồng thời bằng nhau. Hãy tính S là tổng của tất cả các tích ba số trên 3 đỉnh liên tiếp của đã giác trên.

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi huyện Toán 9 năm 2022 - 2023 phòng GDĐT Quế Võ - Bắc Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp huyện môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Quế Võ, tỉnh Bắc Ninh; kỳ thi được diễn ra vào ngày 11 tháng 01 năm 2023. Trích dẫn Đề học sinh giỏi huyện Toán 9 năm 2022 – 2023 phòng GD&ĐT Quế Võ – Bắc Ninh : + Tìm các số tự nhiên x; y sao cho x2 + 3x + 1 = 5y. + Có bao nhiêu cách viết các số tự nhiên từ 1 đến 15 thành một dãy sao cho tổng của hai số liên tiếp bất kỳ trong dãy đều là số chính phương. + Cho hai đường tròn (O) và (O’) thay đổi nhưng luôn cắt nhau tại hai điểm phân biệt A và B cố định. Gọi M là trung điểm của OO’ và T là điểm đối xứng với A qua M. Đường tròn tâm T bán kinh TA tương ứng cắt các đường tròn (O) và (O’) tại các giao điểm thứ hai là E và F. a) Chứng minh rằng AE là tiếp tuyến của đường tròn (O’) b) Chứng minh rằng đường tròn ngoại tiếp tam giác AEF luôn đi qua một điểm cố định khác A, khi hai đường tròn (O) và (O’) thay đổi nhưng luôn đi qua A, B c) Trên đường tròn (O) lấy điểm P bất kỳ sao cho PA cắt (O’) tại Q. Chứng minh rằng TP = TQ.
Đề chọn học sinh giỏi Toán 9 THCS năm 2022 - 2023 sở GDĐT Vĩnh Phúc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 THCS cấp tỉnh năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Vĩnh Phúc; kỳ thi được diễn ra vào ngày 11 tháng 01 năm 2023. Trích dẫn Đề chọn học sinh giỏi Toán 9 THCS năm 2022 – 2023 sở GD&ĐT Vĩnh Phúc : + Cho tam giác ABC có hai đường trung tuyến BM, CN cắt nhau tại điểm G. Gọi K là một điểm trên cạnh BC, đường thẳng (d1) đi qua K và song song với CN cắt AB tại D, đường thẳng (d2) đi qua K và song song với BM cắt AC tại E. Gọi I là giao điểm của hai đường thẳng KG và DE. Chứng minh rằng I là trung điểm của đoạn thẳng DE. + Cho hình thang ABCD có đáy nhỏ là AB và BC = BD. Gọi H là trung điểm của đoạn thẳng CD. Đường thẳng (d) đi qua điểm H cắt các đường thẳng AC, AD lần lượt tại E, F sao cho D nằm giữa A và F. Chứng minh rằng DBF = EBC. + Một cửa hàng bán bưởi Đoan Hùng với giá bán mỗi quả là 50000 đồng. Với giá bán này thì mỗi ngày cửa hàng chỉ bán được 40 quả. Cửa hàng dự định giảm giá bán, ước tính nếu cửa hàng cứ giảm mỗi quả 1000 đồng thì số bưởi bán tăng thêm được là 10 quả mỗi ngày. Xác định giá bán để cửa hàng thu được lợi nhuận cao nhất, biết rằng giá nhập về ban đầu cho mỗi quả bưởi là 30000 đồng.
Đề học sinh giỏi cấp tỉnh Toán 9 năm 2022 - 2023 sở GDĐT Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 9 năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Hải Dương; đề thi gồm 01 trang với 05 bài toán hình thức tự luận, thời gian làm bài 150 phút, đề thi có đáp án, lời giải chi tiết và thang chấm điểm; kỳ thi được diễn ra vào thứ Tư ngày 11 tháng 01 năm 2023. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán 9 năm 2022 – 2023 sở GD&ĐT Hải Dương : + Giải phương trình nghiệm nguyên x3 – y3 – 2y2 – 3y – 1 = 0. Tìm số nguyên tố p để 2041 – p2 không chia hết cho 24. + Cho đường tròn (O) đường kính AB, qua A và B lần lượt vẽ các tiếp tuyến d1 và d2 với (O). Từ điểm M bất kỳ trên (O) vẽ tiếp tuyến với đường tròn, cắt d1 tại C và cắt d2 tại D. Kẻ MH vuông góc với AB tại H. a) Chứng minh rằng: AD, BC, MH đồng quy tại trung điểm của MH. b) Đường tròn (O) đường kính CD cắt đường tròn (O) tại E và F (E thuộc cung AM). Chứng minh EF đi qua trung điểm của MH. + Cho tam giác ABC đều cạnh a. Điểm M di động trên đoạn BC. Vẽ ME vuông góc với AB tại E. MF vuông góc với AC tại F. Tính giá trị nhỏ nhất của đoạn EF theo a.
Đề học sinh giỏi huyện Toán 9 năm 2022 - 2023 phòng GDĐT Trà Ôn - Vĩnh Long
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi vòng huyện môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Trà Ôn, tỉnh Vĩnh Long; đề thi được biên soạn theo hình thức tự luận với 06 bài toán, thời gian làm bài 150 phút (không kể thời gian giám thị coi thi phát đề). Trích dẫn Đề học sinh giỏi huyện Toán 9 năm 2022 – 2023 phòng GD&ĐT Trà Ôn – Vĩnh Long : + Chứng minh rằng 2^70 + 3^70 chia hết cho 13. Tìm nghiệm nguyên của phương trình: 2(x + y) + 1 = 3xy. + Cho M bất kì trên đường tròn tâm O đường kính AB. Tiếp tuyến tại M và tại B của (O) cắt nhau tại D. Qua O kẻ đường thẳng vuông góc với OD cắt MD tại C và cắt BD tại N. a. Chứng minh rằng B, D, M, O cùng thuộc một đường tròn. b. Chứng minh DC = DN. c. Chứng minh AC là tiếp tuyến của đường tròn tâm O. d. Gọi H là chân đường vuông góc kẻ từ M xuống AB, I là trung điểm của MH. Chứng minh B, C, I thẳng hàng. + Cho các số thực dương x, y, z thỏa mãn x + 2y + 3z ≥ 20. Tìm giá trị nhỏ nhất của biểu thức A = x + y + z + 3/x + 9/2y + 4/z.