Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát lớp 9 môn Toán vòng 1 năm 2023 2024 trường THCS Giảng Võ Hà Nội

Nội dung Đề khảo sát lớp 9 môn Toán vòng 1 năm 2023 2024 trường THCS Giảng Võ Hà Nội Bản PDF - Nội dung bài viết Đề khảo sát Toán lớp 9 vòng 1 năm 2023 - 2024 trường THCS Giảng Võ Hà Nội Đề khảo sát Toán lớp 9 vòng 1 năm 2023 - 2024 trường THCS Giảng Võ Hà Nội Chúng tôi xin trân trọng giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát Toán vòng 1 năm học 2023 - 2024 tại trường THCS Giảng Võ, quận Ba Đình, thành phố Hà Nội. Kỳ thi sẽ diễn ra vào Chủ Nhật ngày 01 tháng 10 năm 2023. Một số câu hỏi trích dẫn từ đề khảo sát bao gồm: Cho số tự nhiên n lớn hơn 1, biết n2 + 4 và n2 + 11 đều là các số nguyên tố. Chứng minh rằng n chia hết cho 5. Trong tam giác ABC vuông tại A (AB < AC), đường cao AH cắt BC tại H, M là trung điểm của AC, N là trung điểm của HC. Đường thẳng qua C song song với AB cắt MN tại P. Cần chứng minh các quan hệ đồng dạng và vuông góc trong tam giác. Các số nguyên dương từ 1 đến 100 được chia thành 25 tập hợp sao cho mỗi tập hợp chứa ít nhất một phần tử. Nhiệm vụ là chứng minh tồn tại ba số nguyên dương thuộc cùng một tập hợp sao cho chúng tạo thành độ dài ba cạnh của một tam giác. Hãy chuẩn bị kỹ lưỡng và tự tin tham gia đề khảo sát để kiểm tra kiến thức và ôn tập cho kỳ thi sắp tới. Chúc các em đạt kết quả cao trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề thi HSG lớp 9 môn Toán lần 1 năm 2023 2024 trường THCS Đắk Ơ Bình Phước
Nội dung Đề thi HSG lớp 9 môn Toán lần 1 năm 2023 2024 trường THCS Đắk Ơ Bình Phước Bản PDF - Nội dung bài viết Đề thi HSG Toán lớp 9 lần 1 năm 2023 - 2024 trường THCS Đắk Ơ Bình Phước Đề thi HSG Toán lớp 9 lần 1 năm 2023 - 2024 trường THCS Đắk Ơ Bình Phước Chào đón quý thầy cô giáo và các em học sinh lớp 9! Sytu xin giới thiệu đến bạn đọc đề thi chọn học sinh giỏi cấp trường môn Toán lớp 9 lần 1 năm học 2023 - 2024 tại trường THCS Đắk Ơ, huyện Bù Gia Mập, tỉnh Bình Phước. Kỳ thi sẽ diễn ra vào ngày 10 tháng 10 năm 2023, với đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn một số câu hỏi từ đề thi: - Xác định vị trí của 4 điểm C, H, O, I trên đường tròn và chứng minh chúng cùng thuộc một đường tròn. - Chứng minh rằng MC là tiếp tuyến của đường tròn. - Chứng minh K là trung điểm của đoạn thẳng CH. Đối với câu hỏi về tam giác đều ABC, cần chứng minh mối quan hệ giữa các đoạn thẳng AB, AJ, BI khi IKJ là tam giác đều. Để tăng cường kiến thức và kỹ năng Toán của các em học sinh, đề thi cũng bao gồm một bài toán về phép tính với các số thực dương, giúp rèn luyện logic và sự tư duy của các em. Mong rằng đề thi sẽ giúp các em học sinh lớp 9 trường THCS Đắk Ơ Bình Phước tự tin và thành công trong kỳ thi HSG. Chúc các em học tốt!
Đề thi HSG lớp 9 môn Toán năm 2023 2024 trường THCS Nguyễn Đình Xô Bắc Ninh
Nội dung Đề thi HSG lớp 9 môn Toán năm 2023 2024 trường THCS Nguyễn Đình Xô Bắc Ninh Bản PDF - Nội dung bài viết Đề thi HSG lớp 9 môn Toán năm 2023 2024 trường THCS Nguyễn Đình Xô Bắc Ninh Đề thi HSG lớp 9 môn Toán năm 2023 2024 trường THCS Nguyễn Đình Xô Bắc Ninh Chào thầy cô và các em học sinh lớp 9, hôm nay Sytu xin giới thiệu đến các bạn đề thi chọn học sinh giỏi môn Toán lớp 9 năm học 2023 – 2024 tại trường THCS Nguyễn Đình Xô, Bắc Ninh. Dưới đây là một số câu hỏi và bài tập trong đề thi: Cho hàm số y = mx + m^2 - 1: a) Tìm điều kiện của m để hàm số nghịch biến trên tập số thực. b) Tìm m để đồ thị của các hàm số y = x^2 - 2x + 1 và y = mx + m^2 - 1 đồng quy. c) Tìm m để đồ thị hàm số tạo với trục tung và trục hoành một tam giác có diện tích bằng 2. Cho phương trình 2x^2 - mx + m^2 - 4 = 0: a) Giải phương trình với m = 1. b) Tìm m để phương trình có hai nghiệm phân biệt 1/2 và 3/2 thỏa mãn 3x^2 - 2x - 6 = 0. Cho tam giác ABC vuông tại A, đường cao AH: a) Biết AB = 15cm, HC = 16cm. Tính AC, BC, AH và góc BAH. b) Trên Ax là tia đối tia AB lấy điểm K bất kì, kẻ AI vuông góc CK. Chứng minh tích CI.CK không đổi khi K thay đổi trên Ax. c) Tính giá trị biểu thức (AC^2 - BC^2)/BC. Đề thi đã được chuẩn bị kỹ lưỡng và sẽ giúp các em ôn tập kiến thức hiệu quả. Chúc các em thành công trong kỳ thi sắp tới!
Đề thi HSG huyện lớp 9 môn Toán năm 2023 2024 phòng GD ĐT Nam Đàn Nghệ An
Nội dung Đề thi HSG huyện lớp 9 môn Toán năm 2023 2024 phòng GD ĐT Nam Đàn Nghệ An Bản PDF - Nội dung bài viết Đề thi HSG huyện lớp 9 môn Toán năm 2023-2024 Đề thi HSG huyện lớp 9 môn Toán năm 2023-2024 Sytu xin giới thiệu đến quý thầy cô và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp huyện môn Toán năm học 2023-2024 của phòng Giáo dục và Đào tạo huyện Nam Đàn, tỉnh Nghệ An. Kỳ thi sẽ diễn ra vào sáng thứ Năm ngày 26 tháng 10 năm 2023. Đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Đề thi HSG huyện Toán lớp 9 năm 2023-2024 phòng GD&ĐT Nam Đàn - Nghệ An có các câu hỏi sau: Cho tam giác ABC nhọn, đường cao AH. Gọi M, N lần lượt là hình chiếu của H trên AB, AC. a) Chứng minh AM.AB = AN.AC. b) Biết AH = h;  = a. Tính độ dài MN theo h và a. c) Trong trường hợp  = 90°, chứng minh HM.HN/HB.HC = MN/BC. Cho 2023 số tự nhiên bất kỳ. Chứng minh rằng trong số các số đó có một số chia hết cho 2023 hoặc có một số số mà tổng của các số ấy chia hết cho 2023. Cho 2 số tự nhiên y > x thỏa mãn (2y - 1)² = (2y - x)(6y + x). Chứng minh 2y - x là số chính phương. Mọi thông tin chi tiết và bài giải, quý thầy cô và các em học sinh có thể tải file WORD theo đường link sau: [Link download].
Đề thi HSG lớp 9 môn Toán vòng 1 năm 2023 2024 trường THPT chuyên Hà Nội Amsterdam
Nội dung Đề thi HSG lớp 9 môn Toán vòng 1 năm 2023 2024 trường THPT chuyên Hà Nội Amsterdam Bản PDF - Nội dung bài viết Đề thi HSG lớp 9 môn Toán vòng 1 năm 2023-2024 trường THPT chuyên Hà Nội Amsterdam Đề thi HSG lớp 9 môn Toán vòng 1 năm 2023-2024 trường THPT chuyên Hà Nội Amsterdam Sytu xin chào quý thầy cô giáo và các em học sinh lớp 9. Đây là đề thi chọn đội tuyển học sinh giỏi môn Toán lớp 9 vòng 1 năm học 2023-2024 của trường THPT chuyên Hà Nội Amsterdam. Đề thi sẽ diễn ra vào thứ Năm ngày 14 tháng 9 năm 2023. Đề thi HSG Toán lớp 9 vòng 1 năm 2023-2024 của trường THPT chuyên Hà Nội Amsterdam đưa ra các câu hỏi thú vị và phong phú. Ví dụ như: 1. Cho các số nguyên dương a, b, c, d thỏa mãn a + b + c + d = 2024, bạn hãy tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P = ab + bc + cd. 2. Trong tam giác ABC vuông tại A (AB < AC), đường thẳng PF song song với đường thẳng CM. Chứng minh rằng tam giác GEF cân và đường thẳng AG vuông góc với đường thẳng EF. 3. Xác định tất cả các tập con tốt của tập hợp các số nguyên dương theo yêu cầu đã đề ra. Đây là một cơ hội tuyệt vời để các em học sinh thể hiện khả năng và kiến thức Toán của mình. Mong rằng đề thi sẽ giúp các em rèn luyện và phát triển kỹ năng giải bài toán hiệu quả. Chúc các em thành công và tự tin thể hiện tài năng của mình!