Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi Toán 9 cấp tỉnh năm 2018 - 2019 sở GDĐT Gia Lai

Ngày 07 tháng 03 năm 2019, sở Giáo dục và Đào tạo Gia Lai tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán 9 năm học 2018 – 2019, các em đạt giải trong kỳ thi này sẽ là những tấm gương tiêu biểu trong học tập cho học sinh toàn tỉnh Gia Lai. Đề thi học sinh giỏi Toán 9 cấp tỉnh năm 2018 – 2019 sở GD&ĐT Gia Lai được biên soạn theo hình thức tự luận với 05 bài toán, học sinh làm bài trong khoảng thời gian 150 phút (không kể thời gian giám thị coi thi phát đề), đề thi có lời giải chi tiết. Trích dẫn đề thi học sinh giỏi Toán 9 cấp tỉnh năm 2018 – 2019 sở GD&ĐT Gia Lai : + Một đoàn học sinh đi tham quan quảng trường Đại Đoàn Kết tỉnh Gia Lai. Nếu mỗi ô tô chở 12 người thì thừa 1 người. Nếu bớt đi 1 ô tô thì số học sinh của đoàn được chia đều cho các ô tô còn lại. Hỏi có bao nhiêu học sinh đi tham quan và có bao nhiêu ô tô? Biết rằng mỗi ô tô chở không quá 16 người. [ads] + Trong kỳ thi chọn học sinh giỏi THCS cấp Tỉnh, đoàn học sinh huyện A có 17 học sinh dự thi. Mỗi thí sinh có số báo danh là một số tự nhiên trong khoảng từ 1 đến 907. Chứng minh rằng có thể chọn ra 9 học sinh trong đoàn có tổng các số báo danh chia hết cho 9. + Một cây nến hình lăng trụ đứng đáy lục giác đều có chiều cao và độ dài cạnh đáy lần lượt là 20cm và 1cm . Người ta xếp cây nến trên vào trong một cái hộp có dạng hình hộp chữ nhật sao cho cây nến nằm khít trong hộp. Tính thể tích cái hộp.

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi Toán 9 năm 2021 - 2022 phòng GDĐT Triệu Sơn - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi lớp 9 cấp huyện môn Toán năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Triệu Sơn, tỉnh Thanh Hóa; kỳ thi được diễn ra vào thứ Sáu ngày 31 tháng 12 năm 2021.
Đề chọn HSG Toán 9 đợt 1 năm 2021 - 2022 phòng GDĐT Ứng Hòa - Hà Nội
Đề chọn HSG Toán 9 đợt 1 năm 2021 – 2022 phòng GD&ĐT Ứng Hòa – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút. Trích dẫn đề chọn HSG Toán 9 đợt 1 năm 2021 – 2022 phòng GD&ĐT Ứng Hòa – Hà Nội : + Cho các hàm số bậc nhất. Với giá trị nào của m thì đường thẳng d1 cắt hai đường thẳng d2 và d3 lần lượt tại hai điểm A và B sao cho A có hoành độ âm còn B có hoành độ dương. + Cho ABC có ba góc nhọn cân tại A. Các đường cao AD, BE cắt nhau tại H. 1. Chứng minh: ABC đồng dạng DEC. 2. Chứng minh: cosABC. + Trong hình vuông cạnh bằng 1 cho 33 điểm bất kỳ. Chứng minh rằng trong các điểm đã cho có thể tìm được 3 điểm lập thành tam giác có diện tích không lớn hơn 1/32.
Đề học sinh giỏi huyện Toán 9 năm 2021 - 2022 phòng GDĐT Nam Đàn - Nghệ An
Đề học sinh giỏi huyện Toán 9 năm 2021 – 2022 phòng GD&ĐT Nam Đàn – Nghệ An được biên soạn theo hình thức đề thi tự luận, đề gồm 01 trang với 05 bài toán, thời gian làm bài 150 phút.
Đề chọn học sinh giỏi Toán 9 năm 2021 - 2022 phòng GDĐT Anh Sơn - Nghệ An
Đề chọn học sinh giỏi Toán 9 năm 2021 – 2022 phòng GD&ĐT Anh Sơn – Nghệ An gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút. Trích dẫn đề chọn học sinh giỏi Toán 9 năm 2021 – 2022 phòng GD&ĐT Anh Sơn – Nghệ An : + Cho ba số thực dương a, b, c thỏa mãn: ab + bc + ca = 1. Chứng minh rằng. + Cho tam giác ABC có AB < AC; BAC = 45°; vẽ các đường cao BM và CN. a) Chứng minh: AM.AC = AN.AB. b) Chứng minh BC2 = 2.MN2. c) Từ A kẻ đường thẳng song song với BM cắt đường thẳng BC tại Q. Chứng minh. + Bên trong hình vuông có cạnh bằng 1cm lấy 51 điểm phân biệt không có ba điểm nào thẳng hàng, chứng minh tồn tại ít nhất 3 điểm trong 51 điểm đó tạo thành một tam giác có diện tích bé hơn 0,04 cm2.