Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các chuyên đề lớp 8 môn Toán (tập hai) Phạm Đình Quang

Nội dung Các chuyên đề lớp 8 môn Toán (tập hai) Phạm Đình Quang Bản PDF - Nội dung bài viết Các chuyên đề lớp 8 môn Toán (tập hai) Phạm Đình Quang Các chuyên đề lớp 8 môn Toán (tập hai) Phạm Đình Quang Được biên soạn bởi thầy giáo Phạm Đình Quang, tài liệu này gồm 82 trang, tập hợp các chuyên đề Toán lớp 8 (tập hai) nhằm hỗ trợ học sinh lớp 8 trong quá trình học tập chương trình Toán giai đoạn học kỳ 2. Mục lục: Phần I: Đại số Chương 1: Phương trình bậc nhất một ẩn Bài 1: Mở đầu về phương trình. Phương trình bậc nhất một ẩn - Tóm tắt lý thuyết - Bài tập Bài 2: Phương trình được đưa về dạng Ax + B = 0 - Tóm tắt lý thuyết - Bài tập Bài 3: Phương trình tích - Tóm tắt lý thuyết - Ví dụ - Bài tập Bài 4: Phương trình chứa ẩn ở mẫu. Bài tập tổng hợp - Tóm tắt lý thuyết - Ví dụ - Bài tập Bài 5: Giải bài toán bằng cách lập phương trình - Tóm tắt lý thuyết - Ví dụ - Bài tập Bài 6: Sử dụng máy tính bỏ túi để xác định nghiệm của một phương trình - Tóm tắt lý thuyết - Tìm một hoặc nhiều nghiệm của phương trình Bài 7: Ôn tập chương Chương 2: Bất phương trình bậc nhất một ẩn Bài 1: Liên hệ giữa thứ tự và phép cộng, thứ tự và phép nhân - Tóm tắt lý thuyết - Bài tập Bài 2: Bất phương trình bậc nhất một ẩn - Tóm tắt lý thuyết - Bài tập Bài 3: Phương trình chứa dấu giá trị tuyệt đối - Tóm tắt lý thuyết - Bài tập Bài 4: Ôn tập chương Phần II: Hình học Chương 3: Định lí Thales trong tam giác. Tam giác đồng dạng Bài 1: Định lí Thales trong tam giác. Định lí đảo, hệ quả của định lí Thales - Tóm tắt lý thuyết - Bài tập Bài 2: Tam giác đồng dạng. Các trường hợp đồng dạng của 2 tam giác - Tóm tắt lý thuyết - Bài tập Bài 3: Các trường hợp đồng dạng của hai tam giác vuông - Tóm tắt lý thuyết - Bài tập Bài 4: Ôn tập chương Chương 4: Hình lăng trụ đứng, hình chóp đều Bài 1: Hình hộp chữ nhật - Tóm tắt lý thuyết - Bài tập Bài 2: Hình lăng trụ đứng - Tóm tắt lý thuyết - Bài tập Bài 3: Hình chóp đều và hình chóp cụt đều - Tóm tắt lý thuyết - Bài tập Bài 4: Ôn tập chương Bài 5: Một số bài toán thực tế Chương 5: Các đề thi

Nguồn: sytu.vn

Đọc Sách

Chuyên đề diện tích đa giác
Tài liệu gồm 06 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề diện tích đa giác, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 2: Đa giác, diện tích đa giác. I. TÓM TẮT LÝ THUYẾT Để tính diện tích đa giác, ta thường chia đa giác đó thành các tam giác, các tứ giác tính được diện tích rồi tính tổng các diện tích đó; hoặc tạo ra một đa giác nào đó có chứa đa giác ấy rồi tính hiệu các diện tích. II. BÀI TẬP VÀ CÁC DẠNG TOÁN A. CÁC DẠNG BÀI MINH HỌA Dạng 1. Tính diện tích đa giác. Phương pháp giải: Đưa về tính tổng các diện tích hoặc hiệu các diện tích. Dạng 2. Tính diện tích của đa giác bất kì. Phương pháp giải: Đưa về tính tổng các diện tích hoặc hiệu các diện tích. Dạng 3. Dựng tam giác có diện tích bằng diện tích một đa giác. Phương pháp giải: Thường kẻ đường thẳng song song với một đường thẳng cho trước để tạo ra một tam giác mới có diện tích bằng diện tích một tam giác cho trước. B. PHIẾU BÀI TỰ LUYỆN
Chuyên đề diện tích hình thoi
Tài liệu gồm 14 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề diện tích hình thoi, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 2: Đa giác, diện tích đa giác. I. KIẾN THỨC CƠ BẢN + Diện tích tứ giác có hai đường chéo vuông góc bằng nửa tích hai đường chéo. + Diện tích hình thoi bằng nửa tích hai đường chéo hoặc bằng tích của một cạnh với chiều cao. II. MỘT SỐ DẠNG BÀI Dạng 1: Tính diện tích của tứ giác có hai đường chéo vuông góc. Dạng 2: Tính diện tích hình thoi. Dạng 3: Tìm diện tích lớn nhất (nhỏ nhất) của một hình. III. PHIẾU BÀI TỰ LUYỆN
Chuyên đề diện tích hình thang
Tài liệu gồm 08 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề diện tích hình thang, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 2: Đa giác, diện tích đa giác. I. TÓM TẮT LÝ THUYẾT + Diện tích hình thang bằng nửa tích của tổng hai đáy với chiều cao. + Diện tích hình bình hành bằng tích của một cạnh với chiều cao ứng với cạnh đó. II. BÀI TẬP VÀ CÁC DẠNG TOÁN A. CÁC DẠNG BÀI MINH HỌA Dạng 1. Tính diện tích hình thang. Phương pháp giải: Sử dụng công thức tính diện tích hình thang. Dạng 2. Tính diện tích hình bình hành. Phương pháp giải: Sử dụng công thức tính diện tích hình bình hành. Dạng 3. Tìm vị trí của một điểm để thỏa mãn một đẳng thức về diện tích. Phương pháp giải: Dùng công thức tính diện tích dẫn đến điều kiện về vị trí điểm, thường liên quan đến khoảng cách từ một điểm đến một đường thẳng. Dạng 4. Tìm diện tích lớn nhất (nhỏ nhất) của một hình. Phương pháp giải: + Kí hiệu maxS là giá trị lớn nhất của biểu thức S, minS là giá trị nhỏ nhất của biểu thức S. + Sử dụng tính chất đường vuông góc ngắn hcm đường xiên. + Nếu diện tích của một hình luôn nhỏ hon hoặc bằng một hằng số M và tồn tại một ví trí của hình để diện tích bằng M thì M là diện tích lớn nhất của hình. Tương tự với trường hợp diện tích nhỏ nhất. B. PHIẾU BÀI TỰ LUYỆN
Chuyên đề diện tích tam giác
Tài liệu gồm 11 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề diện tích tam giác, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 2: Đa giác, diện tích đa giác. I. TÓM TẮT LÝ THUYẾT Diện tích tam giác bằng nửa tích của một cạnh với chiều cao tương ứng. Lưu ý: + Nếu hai tam giác có một cạnh bằng nhau thì tỉ số diện tích hai tam giác đó bằng tỉ số các chiều cao tương ứng. + Nếu hai tam giác có một đường cao bằng nhau thì tỉ số diện tích hai tam giác đó bằng tỉ số các cạnh tương ứng. II. BÀI TẬP VÀ CÁC DẠNG TOÁN A. CÁC DẠNG BÀI MINH HỌA Dạng 1. Tính toán, chứng minh về diện tích tam giác. Phương pháp giải: Sử dụng công thức tính diện tích tam giác. Dạng 2. Tính độ dài đoạn thẳng bằng cách sử dụng công thức tính diện tích tam giác. Dạng 3. Sử dụng công thức tính diện tích để chứng minh các hệ thức. Phương pháp giải: Phát hiện quan hệ về diện tích trong hình rồi sử dụng các công thức tính diện tích. Dạng 4. Tìm vị trí của một điểm để thỏa mãn một đẳng thức về diện tích. Phương pháp giải: Dùng công thức tính diện tích dẫn đến điều kiện về vị trí điểm, thường liên quan đến khoảng cách từ một điểm đến một đường thẳng. Dạng 5. Tìm diện tích lớn nhất hoặc nhỏ nhất của một hình. Phương pháp giải: Để tìm diện tích lớn nhất hoặc nhỏ nhất cùa một hình, ta có thể sử dụng mối quan hệ giữa đường vuông góc và đường xiên. B. PHIẾU BÀI TỰ LUYỆN