Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh môn Toán (chuyên) năm 2022 2023 sở GDKHCN Bạc Liêu

Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2022 2023 sở GDKHCN Bạc Liêu Bản PDF - Nội dung bài viết Đề thi tuyển sinh môn Toán (chuyên) năm 2022-2023 sở GDKHCN Bạc Liêu Đề thi tuyển sinh môn Toán (chuyên) năm 2022-2023 sở GDKHCN Bạc Liêu Chào đón đến với đề thi chính thức của kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2022 – 2023 của sở Giáo dục, Khoa học và Công nghệ tỉnh Bạc Liêu. Kỳ thi sẽ diễn ra vào chiều thứ Sáu ngày 10 tháng 06 năm 2022. Trích dẫn một số câu hỏi từ đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022-2023 sở GDKHCN Bạc Liêu: Tìm tất cả các giá trị của tham số m để phương trình x2 - 5x + m - 2 = 0 có hai nghiệm dương phân biệt thoả mãn hệ thức. Cho đường tròn tâm O có đường kính MN = 2R. Vẽ đường kính AB của đường tròn (O) (A khác M và A khác N). Tiếp tuyến của đường tròn (O) tại N cắt các đường thẳng MA, MB lần lượt tại các điểm I, K. Chứng minh tứ giác ABKI nội tiếp. Xác định vị trí của đường kính AB để tứ giác ABKI có diện tích nhỏ nhất khi đường kính AB quay quanh tâm O thoả mãn điều kiện đề bài. Cho nửa đường tròn (O) đường kính AB, điểm C thuộc nửa đường tròn (C khác A và B). Gọi I là điểm chính giữa cung AC, E là giao điểm của AI và BC. Gọi K là giao điểm của AC và BI. Chứng minh rằng EK vuông góc AB. Chứng minh AF là tiếp tuyến của (O), với F là điểm đối xứng với K qua I. Nếu sin BAC = 6/3, chứng minh KH(KH + 2HE) = 2HE.KE, với H là giao điểm của EK và AB. Mọi thí sinh hãy chuẩn bị kỹ lưỡng và tự tin trước những thách thức của đề thi. Chúc các em đạt kết quả cao trong kỳ thi!

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh 10 môn Toán (không chuyên) năm 2020 - 2021 trường PTNK - TP HCM
Ngày … tháng 07 năm 2020, trường Phổ thông Năng khiếu, Đại học Quốc gia thành phố Hồ Chí Minh tổ chức kỳ thi tuyển sinh vào lớp 10 môn Toán năm học 2020 – 2021. Đề tuyển sinh 10 môn Toán (không chuyên) năm 2020 – 2021 trường PTNK – TP HCM gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 120 phút, đề thi có lời giải chi tiết. Trích dẫn đề tuyển sinh 10 môn Toán (không chuyên) năm 2020 – 2021 trường PTNK – TP HCM : + Một kho hàng nhập gạo (trong kho chưa có gạo) trong 4 ngày liên tiếp và mỗi ngày (kể từ ngày thứ hai) đều nhập một lượng gạo bằng 120% lượng gạo đã nhập vào kho trong ngày trước đó. Sau đó, từ ngày thứ năm kho ngừng nhập và mỗi ngày kho lại xuất một lượng gạo bằng 1/10 lượng gạo kho ở ngày trước đó. Hãy tính lượng gạo kho hàng nhập ngày thứ nhất trong mỗi trường hợp sau: a) Ngày thứ ba, sau khi nhập xong thì trong kho có 91 tấn gạo. b) Tổng số gạo đã xuất trong các ngày thứ năm và thứ sau là 50,996 tấn gạo. [ads] + Cho tam giác ABC nội tiếp đường tròn (T) có tâm O, có AB = AC và góc BAC = 90 độ. Gọi M là trung điểm của đoạn AC. Tia MO cắt đường tròn (T) tại điểm D. Đường thẳng BC lần lượt cắt các đường thẳng AO và AD tại các điểm N, P. a) Chứng minh rằng tứ giác OCMN nội tiếp và BDC = 4ODC. b) Tia phân giác của BDP cắt đường thẳng BC tại điểm E. Đường thẳng ME cắt đường thẳng AB tại điểm F. Chứng minh rằng CA = CP và ME vuông góc DB. c) Chứng minh rằng tam giác MNE cân. Tính tỉ số DE/DF. + Chứng minh rằng đường thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt A(x1;y1); B(x2;y2) với mọi số thực m. Tính y1 + y2 theo m.
Đề tuyển sinh lớp 10 môn Toán năm 2020 - 2021 trường chuyên Trần Hưng Đạo - Bình Thuận
Chủ Nhật ngày 05 tháng 07 năm 2020, trường THPT chuyên Trần Hưng Đạo, thành phố Phan Thiết, tỉnh Bình Thuận tổ chức kỳ thi tuyển sinh vào lớp 10 môn Toán năm học 2020 – 2021. Đề tuyển sinh lớp 10 môn Toán năm 2020 – 2021 trường chuyên Trần Hưng Đạo – Bình Thuận gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài thi là 150 phút (không kể thời gian giám thị coi thi phát đề), đề thi có lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2020 – 2021 trường chuyên Trần Hưng Đạo – Bình Thuận : + Cho tam giác ABC nhọn, các đường cao AD, BE, CF cắt nhau tại H. Gọi K là một điểm tùy ý trên cạnh BC với K khác B, K khác C. Kẻ đường kính KM của đường tròn ngoại tiếp tam giác BKF và đường kính KN của đường tròn ngoại tiếp tam giác CEK. Chứng minh rằng M, H, N thẳng hàng. [ads] + Cho 20 điểm phân biệt trong mặt phẳng. Chứng minh rằng tồn tại đường tròn có đúng 12 điểm đã cho bên trong và có đúng 8 điểm đã cho bên ngoài. + Tìm tất cả các số nguyên tố p sao cho 2p + 1 là lập phương của một số nguyên dương.
Đề tuyển sinh lớp 10 môn Toán năm 2020 trường THPT chuyên KHTN Hà Nội (Đề chung)
Chiều Chủ Nhật ngày 12 tháng 07 năm 2020, trường THPT chuyên Khoa học Tự nhiên, Đại học Khoa học Tự nhiên, Đại học Quốc gia Hà Nội tổ chức kỳ thi tuyển sinh vào lớp 10 môn Toán năm học 2020 – 2021. Đề tuyển sinh lớp 10 môn Toán năm 2020 trường THPT chuyên KHTN Hà Nội (Đề chung) là đề thi vòng 1, được dành cho tất cả các thí sinh tham dự kỳ thi, đề gồm 01 trang với 04 bài toán tự luận, thời gian làm bài 120 phút, đề thi được nhận định là khó. Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2020 trường THPT chuyên KHTN Hà Nội (Đề chung) : + Cho tam giác ABC có BC là góc nhỏ nhất trong ba góc của tam giác và nội tiếp đường tròn (O). Điểm D thuộc cạnh BC sao cho AD là phân giác BAC. Lấy các điểm M, N thuộc (O) sao cho các đường thẳng CM và BN cùng song song với đường thẳng AD. 1) Chứng minh rằng AM = AN. 2) Gọi giao điểm của đường thẳng MN với các đường thẳng AC, AB lần lượt là E, F. Chứng minh rằng bốn điểm B, C, E, F cùng thuộc một đường tròn. 3) Gọi P, Q theo thứ tự là trung điểm của các đoạn thẳng AM, AN. Chứng minh rằng các đường thẳng EQ, FP và AD đồng quy. [ads] + Tìm x và y nguyên dương thỏa mãn. + Với a và b là những số thực dương thỏa mãn. Chứng minh rằng.
Đề Toán tuyển sinh lớp 10 chuyên năm 2020 - 2021 sở GDĐT Nam Định (Đề chuyên)
Chiều thứ Năm ngày 09 tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh Nam Định tổ chức kỳ thi tuyển sinh vào lớp 10 THPT chuyên môn Toán năm học 2020 – 2021. Đề Toán tuyển sinh lớp 10 chuyên năm 2020 – 2021 sở GD&ĐT Nam Định (Đề chuyên) dành cho học sinh thi vào các lớp chuyên Toán; đề gồm 01 trang với 05 bài toán, thời gian học sinh làm bài thi là 150 phút. Trích dẫn đề Toán tuyển sinh lớp 10 chuyên năm 2020 – 2021 sở GD&ĐT Nam Định (Đề chuyên) : + Cho tam giác nhọn ABC có AB < AC nội tiếp đường tròn (O). Một đường tròn tiếp xúc với các cạnh AB, AC tại M, N và có tâm I thuộc cạnh BC. Kẻ đường cao AH của tam giác ABC. a) Chứng minh các điểm A, M, H, I, N cùng thuộc một đường tròn và HA là tia phân giác của góc ΜΗΝ. b) Đường thẳng đi qua I và vuông góc với BC cắt MN tại K. Chứng minh AK đi qua trung điểm D của BC. c) Tiếp tuyến của đường tròn (O) tại B và C cắt nhau tại N. Chứng minh BAS = CAD. + Cho các số thực không âm a, b, c thỏa mãn điều kiện a + b + c = 1. Chứng minh a^3 + b^3 + c^3 ≤ 1/8 + a^4 + b^4 + c^4. [ads] + Ban đầu có 2020 viên sỏi để trong 1 chiếc túi. Có thể thực hiện công việc như sau: Bước 1: Bỏ đi 1 viên sỏi và chia túi này thành 2 túi mới. Bước 2: Chọn 1 trong 2 túi này sao cho túi đó có ít nhất 3 viên sỏi, bỏ đi 1 viên từ túi này và chia túi đó thành 2 túi mới, khi đó có 3 túi. Bước 3: Chọn 1 trong 3 túi này sao cho túi đó có ít nhất 3 viên sỏi, bỏ đi 1 viên từ túi này và chia túi đó thành 2 túi mới, khi đó có 4 túi. Tiếp tục quá trình trên. Hỏi sau một số bước có thể tạo ra trường hợp mà mỗi túi có đúng 2 viên sỏi hay không?