Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra định kỳ lần 2 lớp 11 môn Toán năm 2019 2020 trường chuyên Bắc Ninh

Nội dung Đề kiểm tra định kỳ lần 2 lớp 11 môn Toán năm 2019 2020 trường chuyên Bắc Ninh Bản PDF Ngày … tháng 12 năm 2019, trường THPT chuyên Bắc Ninh, tỉnh Bắc Ninh tổ chức kỳ thi kiểm tra chất lượng định kỳ lần thứ hai môn Toán lớp 11 năm học 2019 – 2020. Đề kiểm tra định kỳ lần 2 Toán lớp 11 năm 2019 – 2020 trường chuyên Bắc Ninh được biên soạn theo hình thức trắc nghiệm, đề gồm 04 trang với 50 câu hỏi và bài toán, học sinh làm bài trong 90 phút, đề thi có đáp án. Trích dẫn đề kiểm tra định kỳ lần 2 Toán lớp 11 năm 2019 – 2020 trường chuyên Bắc Ninh : + Cho X là tập hợp các số tự nhiên có 5 chữ số và đôi một khác nhau tạo nên từ các chữ số 0; 1; 3; 4; 5; 7; 8; 9. Lấy ngẫu nhiên một số từ tập X. Tính xác suất để số lấy được có chữ số đầu tiên không nhỏ hơn 5 (chữ số đầu tiên là chữ số hàng chục nghìn). + Trong mặt phẳng cho điểm O đường thẳng d không đi qua điểm O. Trong các mệnh đề sau, mệnh đề nào đúng? A. Phép quay tâm O biến d thành đường thẳng d’ cắt d tại một điểm duy nhất O. B. Phép tịnh tiến biến d thành đường thẳng d’ song song với d. C. Phép đối xứng tâm O biến d thành đường thẳng d’ song song hoặc trùng với d. D. Phép vị tự tâm O tỉ số k (k ≠ 0) biến d thành đường thẳng d’ song song hoặc trùng với d. [ads] + Trò chơi quay bánh xe số trong chương trình truyền hình “Hãy chọn giá đúng” của kênh VTV3 Đài truyền hình Việt Nam, bánh xe số có 20 nấc điểm: 5, 10, 15 … 100 với vạch chia đều nhau và giả sử rằng khả năng chuyển từ nấc điểm đã có tới các nấc điểm còn lại là như nhau. Trong mỗi lượt chơi có 2 người tham gia, mỗi người được quyền chọn quay 1 lần hoặc 2 lần nếu điểm ở lần quay đầu chưa thắng, và điểm số của người chơi được tính như sau: Nếu người chơi chọn quay 1 lần thì điểm của người chơi là điểm quay được. Nếu người chơi chọn quay 2 lần và tổng điểm quay được không lớn hơn 100 thì điểm của người chơi là tổng điểm quay được. Nếu người chơi chọn quay 2 lần và tổng điểm quay được lớn hơn 100 thì điểm của người chơi là tổng điểm quay được trừ đi 100. Luật chơi quy định, trong mỗi lượt chơi người nào có điểm số cao hơn sẽ thắng cuộc, hòa nhau sẽ chơi lại lượt khác. An và Bình cùng tham gia một lượt chơi, An chơi trước và có điểm số là 75. Tính xác suất để Bình thắng cuộc ngay ở lượt chơi này. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát Toán 11 đợt tháng 03 năm 2024 trường THPT Tiên Du 1 - Bắc Ninh
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi khảo sát chất lượng môn Toán 11 đợt tháng 03 năm 2024 trường THPT Tiên Du số 1, tỉnh Bắc Ninh; kỳ thi được diễn ra vào ngày 11 tháng 04 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát Toán 11 đợt tháng 03 năm 2024 trường THPT Tiên Du 1 – Bắc Ninh : + Ông Việt gửi 200 triệu đồng vào một ngân hàng theo hình thức lãi kép, với lãi suất là 6,5% một năm và lãi suất không đổi trong suốt thời gian gửi. Hỏi số tiền lãi của ông Việt sau 5 năm là bao nhiêu triệu đồng? (làm tròn kết quả đến hàng đơn vị). + Số lượng của một loài vi khuẩn sau x giờ được tính bởi công thức rx f x Ae trong đó A là số lượng vi khuẩn ban đầu, r là tỉ lệ tăng trưởng (r > 0). Biết số vi khuẩn ban đầu là 1000 con và sau 10 giờ tăng trưởng thành 7000 con. Tính giá trị của biểu thức 1000r ? (làm tròn kết quả đến hàng đơn vị). + Anh Bắc vay ngân hàng 700 triệu đồng để mua xe ô tô với lãi suât 7,8% một năm, theo hình thức lãi kép. Anh Bắc bắt đầu trả nợ cho ngân hàng theo cách: sau đúng 1 năm kể từ ngày vay anh bắt đầu trả nợ và hai lần trả nợ liên tiếp cách nhau đúng 1 năm. Số tiền trả nợ ở mỗi lần là như nhau và sau đúng 8 năm thì anh Bắc trả hết nợ. Biết rằng lãi suất ngân hàng không thay đổi trong suốt thời gian anh Bắc trả nợ. Gọi số tiền anh Bắc trả nợ ngân hàng trong mỗi lần là M đồng. Tính giá trị của biểu thức log M? (làm tròn kết quả đến hàng phần trăm).
Đề khảo sát lần 3 Toán 11 năm 2023 - 2024 trường THPT Đội Cấn - Vĩnh Phúc
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi khảo sát chất lượng lần 3 môn Toán 11 năm học 2023 – 2024 trường THPT Đội Cấn, tỉnh Vĩnh Phúc; đề thi có đáp án mã đề 101. Trích dẫn Đề khảo sát lần 3 Toán 11 năm 2023 – 2024 trường THPT Đội Cấn – Vĩnh Phúc : + Kim tự tháp Đỏ, còn được biết đến với tên gọi kim tự tháp Bắc, là kim tự tháp lớn nhất trong số ba kim tự tháp chính tại khu lăng mộ Dahshur. Được đặt tên theo màu đỏ của sa thạch, đây cũng là kim tự tháp Ai Cập lớn thứ ba, sau các kim tự tháp của Khufu và Khafra tại Giza. Vào thời điểm được hoàn thành, kim tự tháp Đỏ là công trình nhân tạo cao nhất thế giới với chiều cao 104m. Kim tự tháp được xây dựng theo thiết kế là khối chóp tứ giác đều có cạnh đáy bằng 220m. Tính độ dài cạnh bên của kim tự tháp (kết quả làm tròn đến hàng đơn vị)? + Một gia đình cần khoan một cái giếng để lấy nước. Họ thuê một đội khoan giếng nước đến để khoan giếng nước. Biết giá của mét khoan đầu tiên là 80.000 đồng, kể từ mét khoan thứ 2 giá của mỗi mét khoan tăng thêm 5000 đồng so với giá của mét khoan trước đó. Biết cần phải khoan sâu xuống 40m mới có nước. Gia đình phải trả bao nhiêu nghìn đồng để khoan cái giếng đó. + Chú Nam muốn xây một căn nhà. Chi phí xây nhà hết 1 tỉ đồng, hiện nay chú Nam mới có 700 triệu đồng. Vì không muốn vay tiền nên chú Nam quyết định gửi số tiền 700 triệu đồng vào ngân hàng theo hình thức lãi kép với lãi suất 9%/1 năm. Tuy nhiên giá xây dựng cũng tăng mỗi năm 1% so với năm trước. Hỏi sau ít nhất bao nhiêu năm thì chú Nam thu được số tiền cả gốc lẫn lãi đủ để xây được nhà nhà?
Đề khảo sát lần 3 Toán 11 năm 2023 - 2024 trường THPT Nguyễn Đăng Đạo - Bắc Ninh
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi khảo sát chất lượng lần 3 môn Toán 11 năm học 2023 – 2024 trường THPT Nguyễn Đăng Đạo, tỉnh Bắc Ninh. Đề thi được biên soạn theo cấu trúc trắc nghiệm mới nhất, với nội dung gồm 03 phần: Câu trắc nghiệm nhiều phương án lựa chọn; Câu trắc nghiệm đúng sai; Câu trắc nghiệm trả lời ngắn. Trích dẫn Đề khảo sát lần 3 Toán 11 năm 2023 – 2024 trường THPT Nguyễn Đăng Đạo – Bắc Ninh : + Đề kiểm tra môn toán gồm 50 câu trắc nghiệm, mỗi câu có 4 phương án lựa chọn trong đó chỉ có 1 phương án đúng. Trả lời đúng 1 câu học sinh được cộng 0,2 điểm, trả lời sai không bị trừ điểm. Một học sinh giỏi khi làm bài kiểm tra đã trả lời cả 50 câu, trong đó học sinh đó đã làm chắc chắn đúng được 45 câu, trong 5 câu còn lại thì có 3 câu mà mỗi câu học sinh đó đã loại trừ được 2 phương án chắc chắn là sai, còn lại 2 câu thì học sinh đó chọn ngẫu nhiên 1 trong 4 phương án đã cho. Tính xác suất để học sinh đó được 9,8 điểm (làm tròn kết quả đến hàng phần trăm). + Số lượng của một loài vi khuẩn tăng trưởng sau t giờ được tính theo công thức kt y Ce trong đó C là số lượng vi khuẩn ban đấu, k là tỉ lệ tăng trưởng. Biết số vi khuẩn ban đầu là 500 con và sau 2 giờ là 1000 con. Tính số vi khuẩn sau 5 giờ (làm tròn kết quả đến hàng đơn vị). + Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, AB = 2, SA = 1 và SA ABC. Gọi M là một điểm di động trên cạnh AC sao cho 0 1 AM. Mặt phẳng (α) qua M và vuông góc với AC cắt các cạnh AB SB SC lần lượt tại N PQ. Tìm giá trị lớn nhất của diện tích tứ giác MNPQ (Làm tròn kết quả đến hàng phần trăm).
Đề khảo sát lần 3 Toán 11 năm 2023 - 2024 trường THPT chuyên Thái Bình
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề khảo sát chất lượng lần 3 môn Toán 11 năm học 2023 – 2024 trường THPT chuyên Thái Bình, tỉnh Thái Bình; đề thi có đáp án trắc nghiệm mã đề 132 – 209 – 357 – 485. Trích dẫn Đề khảo sát lần 3 Toán 11 năm 2023 – 2024 trường THPT chuyên Thái Bình : + Trong đợt kiểm tra giữa kì 2, bạn An làm đề thi trắc nghiệm môn Toán. Đề thi gồm 50 câu hỏi, mỗi câu có 4 phương án trả lời, trong đó chỉ có một phương án đúng; trả lời đúng mỗi câu được 0,2 điểm. Bạn An trả lời hết các câu hỏi và chắc chắn đúng 45 câu, 5 câu còn lại An chọn ngẫu nhiên. Tính xác suất để điểm thi môn Toán của An không dưới 9,8 điểm. + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên SA vuông góc với đáy SA a 3. Mặt phẳng (α) qua A, vuông góc với SC, cắt SB SC SD lần lượt tại MNP. Diện tích tứ giác AMNP bằng? + Một lớp học gồm 45 học sinh trong đó có 25 học sinh giỏi Toán, 15 học sinh giỏi Lý, 10 học sinh giỏi cả hai môn Toán và Lý. Chọn ngẫu nhiên một học sinh trong lớp. Tính xác suất để học sinh đó giỏi Toán hoặc giỏi Lý.