Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào lần 3 năm 2022 2023 trường THCS Anh Sơn Nghệ An

Nội dung Đề thi thử Toán vào lần 3 năm 2022 2023 trường THCS Anh Sơn Nghệ An Bản PDF Sytu xin gửi đến quý thầy cô và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT lần 3 năm học 2022 – 2023 của trường THCS Anh Sơn, Nghệ An. Đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm.

Một số câu hỏi trong đề thi như sau:

1. Tìm a và b để đồ thị của hàm số y = ax + b song song với đường thẳng 3x + y = 5 và cắt trục hoành tại điểm có hoành độ bằng 2.

2. Giải bài toán bằng cách lập phương trình hoặc lập hệ phương trình: Thành phố du lịch A và B trong tháng 3/2022 đã đón 8,5 triệu lượt khách du lịch. Sang tháng 4/2022, lượt khách ở thành phố A tăng 20%, ở thành phố B tăng 15% nên tổng số khách đến cả hai thành phố là 10 triệu. Hỏi mỗi thành phố A và B đã đón bao nhiêu lượt khách du lịch trong tháng 3/2022?

3. Câu hỏi về tam giác ABC, với dây cố định BC của đường tròn (O; R). Điểm A di chuyển trên đường tròn sao cho tam giác ABC có ba góc nhọn. Hãy chứng minh những tính chất sau: a) Tứ giác AHDK nội tiếp, b) HK vuông góc với đường kính AQ của đường tròn, c) Tâm đường tròn ngoại tiếp tam giác DEF là một điểm cố định khi E, F là các điểm trên đường tròn.

Đề thi sẽ giúp các em học sinh ôn tập kiến thức cũng như làm quen với cấu trúc đề thi tuyển sinh vào lớp 10. Để tải file WORD của đề thi, vui lòng click vào đường link dưới đây. Chúc các em thi tốt!

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh 10 môn Toán năm 2020 - 2021 trường chuyên Lê Quý Đôn - BR VT
Đề thi tuyển sinh vào lớp 10 môn Toán năm học 2020 – 2021 trường THPT chuyên Lê Quý Đôn – Bà Rịa – Vũng Tàu gồm có 01 trang với 05 bài toán tự luận, thời gian làm bài 150 phút, kỳ thi diễn ra vào ngày 15 tháng 07 năm 2020. Trích dẫn đề tuyển sinh 10 môn Toán năm 2020 – 2021 trường chuyên Lê Quý Đôn – BR VT : + Cho đa thức P(x) = (x – 2)(x + 4)(x^2 + ax – 8) + bx^2 với a và b là các số thực thỏa mãn a + b < 1. Chứng minh rằng phương trình P(x) = 0 có bốn nghiệm phân biệt. + Cho đường tròn (O) có đường kính AB. Từ điểm S thuộc tia đối của tia AB kẻ đến (O) hai tiếp tuyến SC và SD (C và D là hai tiếp điểm). Gọi H là giao điểm của đường kính AB và dây CD. Vẽ đường tròn (O) đi qua C và tiếp xúc với đường thẳng AB tại S. Hai đường tròn (O) và (O’) cắt nhau tại điểm M khác C. a) Chứng minh tứ giác SMHD nội tiếp. [ads] b) Gọi K là hình chiếu vuông góc của C trên BD, I là giao điểm của BM và CK. Chứng minh HI song song với BD. c) Các đường thẳng SM và HM lần lượt cắt (O) tại các điểm L và T (L và T khác M). Chứng minh rằng tứ giác CDTL là hình vuông khi và chỉ khi MC^2 = MS.MD. + Cho tam giác ABC có ba góc nhọn và có trực tâm H. Gọi D, E, F lần lượt là chân ba đường cao kẻ từ A, B, C của tam giác ABC. Biết (AB/HF)^2 + (BC/HD)^2 + (CA/HE)^2 = 36, hãy chứng minh rằng tam giác ABC đều.
Đề tuyển sinh lớp 10 môn Toán năm 2020 - 2021 sở GDĐT Hưng Yên (chuyên)
Đề tuyển sinh lớp 10 môn Toán năm 2020 – 2021 sở GD&ĐT Hưng Yên (chuyên) dành cho thí sinh dự thi vào các lớp chuyên Toán, chuyên Tin; đề gồm có 01 trang với 05 bài toán tự luận, thời gian làm bài 150 phút. Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2020 – 2021 sở GD&ĐT Hưng Yên (chuyên) : + Cho hình vuông ABCD tâm O, cạnh a. M là điểm di động trên đoạn OB (M khác O và B). Vẽ đường tròn tâm I đi qua M và tiếp xúc với BC tại B, vẽ đường tròn tâm J đi qua M và tiếp xúc với CD tại D. Đường tròn (I) và đường tròn (J) cắt nhau tại điểm thứ hai là N. a) Chứng minh rằng 5 điểm A, N, B, C, D cùng thuộc một đường tròn. b) Chứng minh 3 điểm C, M, N thẳng hàng. [ads] + Cho tam giác MNP vuông cân tại M, MN = a. Lấy điểm D thuộc cạnh MN; điểm E thuộc cạnh NP sao cho chu vi tam giác NDE bằng 2a. Tìm giá trị lớn nhất của diện tích tam giác NDE. + Cho a, b là các số dương thỏa mãn điều kiện (a + b)^3 + 4ab ≤ 12. Chứng minh rằng: 1/(1 + a) + 1/(1 + b) + 2020ab ≤ 2021.
Đề Toán tuyển sinh lớp 10 năm 2020 - 2021 trường chuyên Nguyễn Trãi - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề Toán tuyển sinh lớp 10 năm 2020 – 2021 trường chuyên Nguyễn Trãi – Hải Dương, đề thi gồm có 01 trang với 05 bài toán tự luận, thời gian làm bài 150 phút. Trích dẫn đề Toán tuyển sinh lớp 10 năm 2020 – 2021 trường chuyên Nguyễn Trãi – Hải Dương : + Tìm tất cả các số tự nhiên a để a – 2; 4a^2 – 16a + 17; a^2 – 24a + 25 đều là các số nguyên tố. + Cho đường tròn (O;R), hai đường kính AB và CD vuông góc với nhau. Lấy E là điểm bất kỳ nằm trên cung nhỏ AD (E không trung với A và D). Đường thẳng BC cắt OA tại M; đường thẳng EB cắt OD tại N. a) Chứng minh rằng: AM.ED = OM.EA. b) Xác định vị trí điểm E để tổng OM/AM + ON/DN đạt giá trị nhỏ nhất. [ads] + Cho nửa đường tròn (O) đường kính MN. Trên tia đối của tia MO lấy điểm B. Trên tia đối của tia NO lấy điểm C. Từ B và C kẻ các tiếp tuyến với nửa đường tròn (O), chúng cắt nhau tại A, tiếp điểm của nửa đường tròn (O) với BA, AC lần lượt là E, D. Kẻ AH vuông góc với BC (H thuộc BC). Chứng minh AH, BD, CE đồng quy.
Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 sở GDĐT Hà Nội
Sáng thứ Bảy ngày 18 tháng 07 năm 2020, sở Giáo dục và Đào tạo thành phố Hà Nội tổ chức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2020 – 2021. Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Hà Nội gồm có 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 120 phút (không kể thời gian phát đề), đáp án và lời giải chi tiết của đề thi sẽ được THCS. cập nhật trong thời gian sớm nhất có thể. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Quãng đường từ nhà An đến nhà Bình dài 3 km. Buổi sáng, An đi bộ từ nhà An đến nhà Bình. Buổi chiều cùng ngày, An đi xe đạp từ nhà Bình về nhà An trên cùng quãng đường đó với vận tốc lớn hơn vận tốc đi bộ của An là 9 km/h. Tính vận tốc đi bộ của An, biết thời gian đi buổi chiều ít hơn thời gian đi buổi sáng là 45 phút (giả định rằng An đi bộ với vận tốc không đổi trên toàn bộ quãng đường đó). + Một quả bóng bàn có dạng một hình cầu có bán kính bằng 2 cm. Tính diện tích bề mặt của quả bóng bàn đó (lấy pi = 3,14). + Trong mặt phẳng tọa độ Oxy, xét đường thẳng (d): y = mx +4 với m khác 0. a) Gọi A là giao điểm của đường thẳng (d) và trục Oy. Tìm tọa độ của điểm A. b) Tìm tất cả giá trị của m để đường thẳng (d) cắt trục Ox tại điểm B sao cho tam giác OAB là tam giác cân.