Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu dạy thêm học thêm chuyên đề tập hợp

Nội dung Tài liệu dạy thêm học thêm chuyên đề tập hợp Bản PDF Sản phẩm Tài liệu dạy thêm học thêm chuyên đề tập hợp là một tài liệu được thiết kế nhằm hỗ trợ giáo viên và học sinh lớp 6 trong quá trình dạy thêm và học thêm môn Toán. Tài liệu này bao gồm 18 trang, gồm hai phần chính: Tóm tắt lý thuyết và Hướng dẫn phương pháp giải các dạng toán và bài tập chuyên đề tập hợp.

Phần I: Tóm tắt lý thuyết trình bày những kiến thức cơ bản về tập hợp. Trong phần này, tập hợp được hiểu là một tập các đối tượng được biểu diễn bằng hai cách: liệt kê các phần tử của tập hợp hoặc chỉ ra tính chất đặc trưng của các phần tử trong tập hợp. Lưu ý rằng tên tập hợp được viết bằng chữ cái in hoa và các phần tử được viết trong hai dấu ngoặc nhọn. Các phần tử có thể được liệt kê bằng cách cách nhau bởi dấu ";" hoặc dấu ",". Trong trường hợp có phần tử là số, ta sử dụng dấu ";" để tránh nhầm lẫn giữa số tự nhiên và số thập phân.

Phần II: Hướng dẫn phương pháp giải các dạng toán và bài tập chuyên đề tập hợp. Phần này giúp học sinh nắm vững cách giải các dạng toán và bài tập liên quan đến tập hợp. Các dạng bài được phân thành 5 loại:

1. Biểu diễn một tập hợp cho trước: Phương pháp biểu diễn các tập hợp gồm liệt kê các phần tử hoặc chỉ ra tính chất đặc trưng của tập hợp.

2. Quan hệ giữa phần tử và tập hợp, giữa các tập hợp: Cách diễn đạt quan hệ giữa phần tử và tập hợp, cũng như quan hệ giữa các tập hợp.

3. Minh họa tập hợp cho trước bằng biểu đồ Ven: Cách minh họa tập hợp bằng biểu đồ Ven, bao gồm liệt kê phần tử của tập hợp và vẽ biểu đồ Ven tương ứng.

4. Xác định số phần tử của một tập hợp: Cách xác định số phần tử của tập hợp dựa trên liệt kê phần tử hoặc tính chất đặc trưng của tập hợp.

5. Tập hợp con: Cách viết tập hợp con của một tập hợp đã cho, bao gồm viết tất cả các tập hợp con có số phần tử từ 0 đến n, sao cho mỗi phần tử của tập con đều thuộc tập hợp gốc.

Đối với các dạng toán và bài tập liên quan đến tập hợp có số phần tử nhỏ, ta có thể biểu diễn tập hợp và sau đó đếm số phần tử. Ngoài ra, có thể sử dụng các công thức xác định số phần tử của các tập hợp cụ thể.

Tài liệu cung cấp những ví dụ và giải thích chi tiết về cách giải các dạng toán và chi tiết cách tính số phần tử của một tập hợp. Đồng thời, cung cấp minh họa bằng biểu đồ Ven giúp học sinh hiểu rõ hơn về cách biểu diễn tập hợp.

Tài liệu này sẽ giúp giáo viên và học sinh lớp 6 nắm vững kiến thức về tập hợp và phương pháp giải các dạng toán và bài tập liên quan đến tập hợp.

Nguồn: sytu.vn

Đọc Sách

Chuyên đề quy đồng mẫu nhiều phân số
Tài liệu gồm 16 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề quy đồng mẫu nhiều phân số, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Số học chương 3: Phân số. Mục tiêu : Kiến thức: + Hiểu được thế nào là quy đồng mẫu nhiều phân số. + Nắm được các bước tiến hành quy đồng mẫu nhiều phân số. Kĩ năng: + Biết cách quy đồng được mẫu nhiều phân số. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Quy đồng mẫu các phân số. Muốn quy đồng mẫu số nhiều phân số ta làm như sau: + Bước 1. Tìm một bội chung của các mẫu (thường là BCNN) để làm mẫu chung. + Bước 2. Tìm thừa số phụ của mỗi mẫu (bằng cách chia mẫu chung cho từng mẫu). + Bước 3. Nhân cả tử và mẫu của mỗi phân số với thừa số phụ tương ứng. Chú ý: Trước khi quy đồng cần viết phân số dưới dạng phân số có mẫu dương. Nên rút gọn các phân số trước khi quy đồng. Dạng 2 : Bài toán đưa về việc quy đồng mẫu số các phân số. Để kiểm tra hai phân số có bằng nhau hay không ta đưa phân số về chung mẫu. Hai phân số có tử mẫu bằng nhau thì bằng nhau. Hai cách có thể dùng để đưa hai phân số về chung mẫu là: + Cách 1. Rút gọn phân số. + Cách 2. Quy đồng mẫu số. Để tìm số nguyên x trong đẳng thức về phân số ta có thể quy đồng mẫu sau đó tìm x để các tử số bằng nhau.
Chuyên đề tính chất cơ bản của phân số, rút gọn phân số
Tài liệu gồm 21 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề tính chất cơ bản của phân số, rút gọn phân số, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Số học chương 3: Phân số. Mục tiêu : Kiến thức: + Nắm vững tính chất cơ bản của phân số. + Nắm được cách rút gọn phân số. + Hiểu được khái niệm phân số tối giản. Kĩ năng: + Viết được phân số có mẫu âm thành phân số bằng nó có mẫu dương. + Vận dụng tính chất của phân số để so sánh, rút gọn các phân số. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 . Tìm số chưa biết trong đẳng thức của phân số. Nhân hoặc chia cả tử và mẫu của một phân số với cùng một số nguyên khác 0 thì ta được một phân số bằng phân số đã cho. Dạng 2 . Rút gọn phân số – rút gọn biểu thức dạng phân số. Để rút gọn phân số ta chia cả tử và mẫu của nó cho một ước chung (khác 1 và -1) của chúng. Khi nói rút gọn một phân số, ta thường hiểu là đưa phân số đó về dạng tối giản. Để rút gọn phân số 0 a b b thành phân số tối giản, ta làm như sau: + Bước 1. Tìm ƯCLN(a;b) = n. + Bước 2. Chia cả tử và mẫu cho n. Dạng 3 . Phân số bằng nhau. Dạng 4 . Biểu diễn các số đo dưới dạng phân số với đơn vị cho trước. Dựa vào tỉ lệ của các đại lượng mà ta chuyển về dạng phân số. Dạng 5 . Phân số tối giản. Phân số a/b tối giản nếu |a| và |b| là hai số nguyên tố cùng nhau, hay ƯC(a;b) = {-1;1}. Chứng minh phân số a/b tối giản: Ta chứng minh ƯCLN(a;b) = 1.
Chuyên đề phân số bằng nhau
Tài liệu gồm 11 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề phân số bằng nhau, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Số học chương 3: Phân số. Mục tiêu : Kiến thức: + Hiểu được khái niệm hai phân số bằng nhau. Kĩ năng: + Nhận dạng được hai phân số bằng nhau, không bằng nhau. + Lập được các cặp phân số bằng nhau từ một đẳng thức tích. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 . Nhận biết các cặp phân số bằng nhau. Dạng 2 . Tìm số chưa biết trong đẳng thức của hai phân số. Dạng 3 . Viết các phân số bằng nhau từ đẳng thức đã cho.
Chuyên đề mở rộng khái niệm phân số
Tài liệu gồm 16 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề mở rộng khái niệm phân số, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Số học chương 3: Phân số. Mục tiêu : Kiến thức: + Thấy được sự khác nhau và giống nhau giữa khái niệm phân số đã học ở tiểu học và khái niệm phân số ở lớp 6. Kĩ năng: + Viết được các phân số mà tử số và mẫu số là các số nguyên. + Biết cách dùng phân số để diễn đạt một nội dung thực tế. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Viết các phân số. “a phần b” hoặc a : b được viết thành a/b (trong đó b khác 0). Biểu diễn phân số của một hình cho trước: + Mẫu cho biết số phần bằng nhau được chia ra. + Tử cho biết số phần được lấy (tô màu). Dạng 2 : Viết các số nguyên kẹp giữa hai phân số có tử là bội của mẫu. + Bước 1. Tính giá trị của các phân số đã cho dưới dạng số nguyên. + Bước 2. Tìm tất cả các số nguyên “kẹp giữa” hai số nguyên đó. Dạng 3 : Điều kiện để phân số tồn tại. Điều kiện để một biểu thức có giá trị là một số nguyên. Phân số a/b tồn tại khi a b và b khác 0. Phân số a b có giá trị là một số nguyên khi a b.