Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 1 (HK1) lớp 7 môn Toán năm 2020 2021 trường THCS Phú Diễn Hà Nội

Nội dung Đề thi học kì 1 (HK1) lớp 7 môn Toán năm 2020 2021 trường THCS Phú Diễn Hà Nội Bản PDF - Nội dung bài viết Đề thi học kì 1 Toán lớp 7 năm 2020 - 2021 trường THCS Phú Diễn Hà Nội Đề thi học kì 1 Toán lớp 7 năm 2020 - 2021 trường THCS Phú Diễn Hà Nội Xin chào quý thầy cô và các em học sinh lớp 7! Hôm nay, Sytu xin giới thiệu đến mọi người đề thi học kì 1 Toán lớp 7 năm học 2020 - 2021 của trường THCS Phú Diễn, Hà Nội. Đề thi này nhằm giúp các em ôn tập và chuẩn bị tốt cho kỳ thi học kì 1 sắp tới. Trích dẫn đề thi học kì 1 Toán lớp 7 năm 2020 - 2021 trường THCS Phú Diễn - Hà Nội: 1) Tại "Ngày hội đọc sách" của trường, lớp 1, lớp 2 và lớp 3 đã chuẩn bị một số sách để trưng bày và giới thiệu. Biết số quyển sách của ba lớp này tỉ lệ nghịch với các số 5, 6, 8. Hỏi số sách của mỗi lớp khi cả ba lớp chuẩn bị tổng cộng 59 quyển sách. 2) Cho góc nhọn xOy. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA OB. Gọi M là trung điểm của AB. a) Chứng minh tam giác OMA đồng dạng với tam giác OMB. b) Trên tia OM lấy K sao cho M nằm giữa O và K. Chứng minh AK // BK. c) Giả sử xOy = 180°. Tính số đo góc OAB. d) Qua K kẻ đường thẳng song song với AB cắt Ox tại E và Oy tại F. Gọi N là giao điểm của AF và BE. Chứng minh rằng O, M, N thẳng hàng. 3) Điền kết quả đúng vào chỗ chấm: a) Cho đường thẳng c cắt hai đường thẳng song song a và b tạo ra hai góc khác nhau A1 và 3B nếu đo góc A = 80° thì đo góc B là bao nhiêu? b) Nếu xx' yy' và xx' // zz' thì điều gì suy ra? c) Cho tam giác ABC và tam giác MNP biết BC = 5 cm, NP = 4 cm. Hỏi điều gì điều kiện cần phải có để ABC đồng dạng với MNP? d) Cho tam giác ABC và tam giác MIK có AB // MI. Cần thêm điều kiện gì để ABC đồng dạng với MIK trong trường hợp góc cạnh góc? Đây là một đề thi thú vị và đa dạng, hy vọng rằng các em sẽ vận dụng kiến thức đã học để giải quyết các bài tập một cách thành công. Chúc các em học tốt và đạt kết quả cao trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề thi HK1 Toán 7 năm học 2017 - 2018 phòng GD và ĐT thành phố Thanh Hóa
Đề thi HK1 Toán 7 năm học 2017 – 2018 phòng GD và ĐT thành phố Thanh Hóa gồm 5 bài toán tự luận, thời gian làm bài 90 phút, đề thi có lời giải chi tiết . Trích dẫn đề thi HK1 Toán 7 : + Cho tam giác ABCvuông tại A có AB = AC. Gọi K là trung điểm của BC. a) Chứng minh tam giác AKB và tam giác AKC bằng nhau b) Chứng minh AK ⊥ BC c) Từ C vẽ đường vuông góc với BC cắt AB tại E. Chứng minh EC//AK và tính số đo góc AEC? a) Xét tam giác AKB và tam giác AKC có: AB = AC (GT) KB = KC (GT) AK cạnh chung Suy ra hai tam giác AKB và AKC bằng nhau (c – c – c) b) Từ kết quả câu a, suy ra hai góc AKB và AKC bằng nhau (2 góc tương ứng) Mà góc AKB + góc AKC = 180 độ (2 góc kề bù) Suy ra góc AKB = góc AKC = 90 độ. Hay AK ⊥ BC [ads] c) Vì EC ⊥ BC (GT) và AK ⊥ BC (câu b) nên EC//AK Vì tam giác ABC vuông tại A nên góc CAB = 90 độ ΔABK = ΔACK (kết quả câu a) Suy ra góc BAK = góc CAK = 90 độ (Hai góc tương ứng) EC // AK Góc AEC = góc BAK (Hai góc đồng vị) Mà góc BAK = 45 độ Suy ra góc AEC = 45 độ Vậy góc AEC = 45 độ.
Đề thi HK1 Toán 7 năm học 2017 - 2018 phòng GD và ĐT Vĩnh Tường - Vĩnh Phúc
Đề thi HK1 Toán 7 năm học 2017 – 2018 phòng GD và ĐT Vĩnh Tường – Vĩnh Phúc gồm 4 câu hỏi trắc nghiệm và 5 bài toán tự luận, thời gian làm bài 90 phút, đề thi có lời giải chi tiết và thang điểm. Trích dẫn đề thi HK1 Toán 7 : + Cho tam giác ABC có AB = AC, M là trung điểm của BC. a) Chứng minh hai tam giác AMB và AMC bằng nhau b) Từ M kẻ ME vuông góc với AB (E thuộc AB), MF vuông góc với AC (F thuộc AC). Chứng minh AE = AF. c) Chứng minh: EF song song với BC. a) Vẽ hình, viết giả thiết và kết luận Xét tam giác AMB và tam giác AMC có: AB = AC (Theo giả thiết) AM là cạnh chung MB = MC (Theo giả thiết) Suy ra hai tam giác AMB và AMC bằng nhau (Theo trường hợp cạnh – cạnh – cạnh) [ads] b) Theo phần a) ta có hai tam giác AMB và AMC bằng nhau, suy ra hai góc MAB và MAC bằng nhau (2 góc tương ứng) Xét hai tam giác vuông EMA và FMA có: MA là cạnh chung Góc MAB và góc MAC bằng nhau (Chứng minh trên) Suy ra hai tam giác EMA và FMA bằng nhau (Theo trường hợp cạnh huyền – góc nhọn) hay (góc – cạnh – góc) Suy ra AE = AF (hai cạnh tương ứng) c) Theo chứng minh phần a) ta có hai tam giác AMB và AMC bằng nhau suy ra 2 góc AMB và AMC bằng nhau Mà hai góc này ở vị trí kề bù nên góc AMB + góc AMC = 180 độ. Suy ra: Góc AMB = góc AMC = 90 độ, suy ra AM ⊥ BC (1) Gọi N là giao điểm của AM và EF. Xét tam giác ANE và tam giác ANF có: AN là cạnh chung Góc NAE = góc NAF (hai góc tương ứng của hai tam giác bằng nhau AMB và AMC) AE = AF (theo chứng minh phần b) Suy ra hai tam giác ANE và ANF bằng nhau (Theo trường hợp cạnh – góc – cạnh) Suy ra góc ANE = góc ANF, mà hai góc này ở vị trí kề bù nên Góc ANE + góc ANF = 180 độ. Suy ra Góc ANE = Góc ANF = 90 độ, suy ra EF ⊥ AM (2) Từ (1) và (2) suy ra EF và BC song song với nhau (đpcm)
Đề thi HK1 Toán 7 năm học 2017 - 2018 phòng GD và ĐT Vĩnh Bảo - Hải Phòng
Đề thi HK1 Toán 7 năm học 2017 – 2018 phòng GD và ĐT Vĩnh Bảo – Hải Phòng gồm 5 bài toán tự luận, thời gian làm bài 90 phút, đề thi có lời giải chi tiết . Trích dẫn đề thi : + Cho tam giác ABC vuông tại A có góc B = 60 độ. Vẽ AH ⊥ BC tại H. a) Tính số đo góc HAB. b) Trên cạnh AC lấy điểm D sao cho AD = AH. Gọi I là trung điểm của cạnh HD. Chứng minh ∆AHI = ∆ADI. Từ đó suy ra AI ⊥ HD. c) Tia AI cắt cạnh HC tại điểm K. Chứng minh ∆AHK = ∆ADK từ đó suy ra AB // KD. d) Trên tia đối của tia HA lấy điểm E sao cho HE = AH. Chứng minh H là trung điểm của BK và ba điểm D, K, E thẳng hàng. [ads] + Một nhân viên văn phòng có thể đánh máy được 160 từ trong 2,5 phút. Hỏi cần bao nhiêu phút để người đó đánh được 800 từ ? (giả thiết rằng thời gian để đánh được các từ là như nhau). + Cho hàm số y = 3x a) Vẽ đồ thị hàm số trên. b) Điểm M(- 2; – 6) có thuộc đồ thị hàm số y = 3x? Vì sao?
Đề thi học kỳ 1 Toán 7 năm học 2017 - 2018 trường THCS Nghiêm Xuyên - Hà Nội
Đề thi học kỳ 1 Toán 7 năm học 2017 – 2018 trường THCS Nghiêm Xuyên – Hà Nội gồm 8 câu trắc nghiệm và 5 câu tự luận, thời gian làm bài 90 phút. Trích dẫn đề thi : + Ba chi đội 7A, 7B, 7C tham gia làm kế hoạch nhỏ thu nhặt giấy vụn tổng cộng được 120kg giấy vụn. Tính số giấy mỗi chi đội thu được, biết rằng số giấy mỗi chi đội thu được tỉ lệ với 7; 8; 9. + Cho ΔABC có AB = AC, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho AM = MD. Chứng minh rằng: a) ΔABM = ΔDCM b) AB // DC c) AM ⊥ BC d) CM là phân giác của góc ACD [ads] + Cho x và y tỉ lệ thuận với nhau và khi x = -3 thì y = 12. Hệ số tỉ lệ k của y đối với x là: A. k = -0,25 B. k = -4 C. k = -36 D. k = 4