Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh lớp 10 năm 2018 - 2019 môn Toán chuyên Lê Quý Đôn - Bình Định

Đề tuyển sinh lớp 10 năm 2018 – 2019 môn Toán trường THPT chuyên Lê Quý Đôn – Bình Định (đề chung dành cho tất cả các thí sinh) được biên soạn theo hình thức tự luận với 5 bài toán, thời gian làm bài 120 phút, đề thi có lời giải chi tiết . Trích dẫn đề tuyển sinh lớp 10 năm 2018 – 2019 môn Toán chuyên Lê Quý Đôn – Bình Định : + Một người dự định đi từ A đến B cách nhau 120 km bằng xe máy với vận tốc không đổi để đến B vào thời điểm định trước. Sau khi đi được 1 giờ người đó nghỉ 10 phút, do đó để đến B đúng thời điểm đã định, người đó phải tăng vận tốc thêm 6km/ giờ so với vận tốc ban đầu trên quãng đường còn lại. Tính vận tốc ban đầu của người đó. [ads] + Cho tam giác ABC (AB < AC) có các góc đều nhọn nội tiếp trong đường tròn tâm O. AD là đường kính của đường tròn (O), H là trung điểm BC. Tiếp tuyến tại D của (O) cắt đường thẳng BC tại M. Đường thẳng MO cắt AB, AC lần lượt tại E và F. a) Chứng minh :MD^2 = MB.MC. b) Qua B kẻ đường thẳng song song với MO cắt đường thẳng AD tại P. Chứng minh bốn điểm B, H, D, P cùng nằm trên một đường tròn. c) Chứng minh O là trung điểm của EF.

Nguồn: toanmath.com

Đọc Sách

Đề thi vào 10 môn Toán năm 2021 - 2022 trường chuyên Hùng Vương - Gia Lai
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi vào 10 môn Toán (không chuyên) năm học 2021 – 2022 trường THPT chuyên Hùng Vương – Gia Lai. Trích dẫn đề thi vào 10 môn Toán năm 2021 – 2022 trường chuyên Hùng Vương – Gia Lai : + Một hình chữ nhật có chu vi bằng 68 cm. Nếu tăng chiều rộng 6 cm và giảm chiều dài 10 cm thì được một hình vuông có cùng diện tích với hình chữ nhật ban đầu. Tìm kích thước của hình chữ nhật ban đầu. + Một lọ thuỷ tinh hình trụ có đường kính đáy bằng 15 cm (độ dày của thành lọ và đáy lọ không đáng kể) chứa nước. Người ta thả chìm hoàn toàn 10 viên bi dạng khối cầu có cùng đường kính bằng 4 cm vào lọ, biết nước trong lọ không tràn ra ngoài. Tính chiều cao của lượng nước dâng lên so với mực nước ban đầu (kết quả lấy đến một chữ số sau dấu phẩy). + Cho tam giác nhọn ABC nội tiếp đường tròn tâm O, hai đường cao BE và CF cắt nhau tại H (E thuộc AC; F thuộc AB). a) Chứng minh tứ giác AEHF nội tiếp một đường tròn. b) Chứng minh EF vuông góc OA.
Đề thi thử Toán vào lớp 10 lần 2 năm 2021 trường chuyên Đại học Sư phạm Hà Nội
Đề thi thử Toán vào lớp 10 lần 2 năm 2021 trường chuyên Đại học Sư phạm Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 90 phút. Trích dẫn đề thi thử Toán vào lớp 10 lần 2 năm 2021 trường chuyên Đại học Sư phạm Hà Nội : + Một nhà máy theo kế hoạch phải sản xuất 20000 hộp khẩu trang trong thời gian quy định (số hộp khẩu trang nhà máy sản xuất được trong mỗi ngày là bằng nhau). Để đẩy nhanh tiến độ trong công cuộc phòng chống đại dịch COVID- 19, mỗi ngày nhà máy đã sản xuất nhiều hơn kế hoạch 100 hộp khẩu trang. Do đó, nhà máy đã hoàn thành công việc trước thời hạn 10 ngày. Hỏi theo kế hoạch, mỗi ngày nhà máy phải sản xuất bao nhiêu hộp khẩu trang? + Cho phương trình x2 + (1 – m)x – 2m – 4 = 0 với m là tham số. 1) Chứng minh rằng phương trình luôn có hai nghiệm phân biệt x1, x2 với mọi giá trị của tham số m. Tính giá trị của biểu thức T = (x1 + 2)(x2 + 2). + Cho đường tròn tâm O có hai đường kính AB và CD vuông góc với nhau. Gọi M là điểm tùy ý trên cung nhỏ AC (M không trùng với A và C). Tia DM cắt các đường thẳng AB, AC và BC lần lượt tại N, P và Q. Gọi H là hình chiếu của điểm C trên đường thẳng AQ. 1) Chứng minh rằng tứ giác AOCH nội tiếp và tia HO là tia phân giác của AHC. 2) Chứng minh PA/PC = HA/HC. 3) Chứng minh.
Đề thi thử Toán vào lớp 10 lần 2 năm 2021 - 2022 trường Thái Thịnh - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi thử Toán vào lớp 10 lần 2 năm học 2021 – 2022 trường THCS Thái Thịnh, quận Đống Đa, thành phố Hà Nội; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi thử Toán vào lớp 10 lần 2 năm 2021 – 2022 trường Thái Thịnh – Hà Nội : + Một lon nước ngọt hình trụ có đường kính đáy bằng 6cm, chiều cao 10cm. Tính thể tích của lon nước. (Bỏ qua bề dày của lon nước). + Trong mặt phẳng tọa độ Oxy cho đường thẳng (d): y 3x m 1 và parabol (P): 2 y x. a) Tìm tọa độ giao điểm của (d) và (P) khi m = 3. b) Tìm tất cả các giá trị của m để (d) cắt (P) tại hai điểm có hoành độ x1, x2 thỏa mãn 1 2 x 3x. + Cho đường tròn (O;R) và dây BC cố định. Trên tia đối của tia BC lấy điểm A. Kẻ các tiếp tuyến AM, AN với đường tròn (O) (M và N là các tiếp điểm, N thuộc cung BC nhỏ). Gọi H là trung điểm của dây BC. 1) Chứng minh bốn điểm A, M, O, H cùng thuộc một đường tròn. 2) MN cắt OA tại điểm I. Chứng minh rằng AI.AO = AM2. 3) Tia MH cắt đường tròn (O) tại điểm thứ hai D. Giả sử 3 điểm A, B, C cố định, đường tròn (O) đi động. Chứng minh ND//AC và đường thẳng MN luôn đi qua một điểm cố định.
Đề thi thử Toán vào lớp 10 năm 2021 - 2022 lần 3 trường Nguyễn Công Trứ - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi thử Toán vào lớp 10 năm học 2021 – 2022 lần 3 trường THCS Nguyễn Công Trứ, quận Ba Đình, thành phố Hà Nội; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi thử Toán vào lớp 10 năm 2021 – 2022 lần 3 trường Nguyễn Công Trứ – Hà Nội : + Một lon nước ngọt hình trụ có đường kính đáy là 5 (cm), độ dài trục là 12 (cm). Tính diện tích toàn phần của lon nước hình trụ đó? + Trong cùng mặt phẳng tọa độ Oxy, cho: Parabol (P): 𝑦𝑦 = 𝑥𝑥2 và đường thẳng (d): 𝑦𝑦 = (𝑚𝑚 − 1) 𝑥𝑥 + 𝑚𝑚2 − 2𝑚𝑚 + 3. a) Chứng minh (d) luôn cắt (P) tại hai điểm phân biệt với mọi giá trị của m. b) Giả sử (d) cắt (P) tại hai điểm phân biệt A, B. Tìm m để tam giác OAB cân tại O. Khi đó tính diện tích tam giác OAB với m vừa tìm được. + Cho tam giác ABC nhọn, nội tiếp (O). Gọi D và E lần lượt là các điểm chính giữa cung nhỏ AC và cung nhỏ AB. Đường thẳng BD và CE cắt nhau tại F. Đường thẳng DE cắt AB và AC lần lượt tại I và K. a) Chứng minh: Tam giác EBF cân tại E. b) Chứng minh: Tứ giác EBFI nội tiếp được; từ đó suy ra IF // AC. c) Tứ giác AIFK là hình gì? Tại sao? d) Tam giác ABC cần thêm điều kiện gì để tứ giác AEFD là hình thoi và có diện tích gấp 3 lần diện tích tứ giác AIFK.