Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tham khảo giữa học kì 1 (HK1) lớp 8 môn Toán năm 2023 2024 trường Nguyễn Bỉnh Khiêm Quảng Nam

Nội dung Đề tham khảo giữa học kì 1 (HK1) lớp 8 môn Toán năm 2023 2024 trường Nguyễn Bỉnh Khiêm Quảng Nam Bản PDF Bộ đề tham khảo giữa học kì 1 môn Toán lớp 8 năm học 2023-2024 tại trường THCS Nguyễn Bỉnh Khiêm, tỉnh Quảng Nam là cơ hội để các em học sinh lớp 8 có thể tự kiểm tra và rèn luyện kiến thức. Đề thi bao gồm 15 câu trắc nghiệm và 3 câu tự luận, giúp học sinh đánh giá được khả năng làm bài của mình.

Nội dung đề thi tập trung vào hai chủ đề chính: Biểu thức đại số và Tứ giác. Trong phần Biểu thức đại số, học sinh cần nhận biết các khái niệm về đơn thức, đơn thức đồng dạng, đa thức nhiều biến để thực hiện các phép toán cộng, trừ, nhân, chia đa thức. Họ cũng cần hiểu cách thu gọn đơn thức, đa thức, và vận dụng kiến thức để tính giá trị của đa thức khi biết giá trị của các biến.

Trước chủ đề Tứ giác, học sinh sẽ được đưa vào giải thích về tổng các góc trong một tứ giác lồi, dấu hiệu nhận biết các tứ giác đặc biệt như hình thang cân, hình bình hành, hình chữ nhật, hình thoi, và hình vuông. Họ cũng cần vận dụng kiến thức để chứng minh và giải thích tính chất của các tứ giác đặc biệt đó.

Đề thi cung cấp đáp án và hướng dẫn chấm điểm để giúp học sinh tự kiểm tra và sửa sai. Với nội dung rõ ràng, chi tiết và dễ hiểu, đề tham khảo này sẽ giúp học sinh tự tin hơn khi đối diện với bài kiểm tra chính thức.

Nguồn: sytu.vn

Đọc Sách

Đề giữa học kỳ 1 Toán 8 năm 2022 - 2023 trường THCS Giảng Võ - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề kiểm tra đánh giá chất lượng giữa học kỳ 1 môn Toán 8 năm học 2022 – 2023 trường THCS Giảng Võ, quận Ba Đình, thành phố Hà Nội; đề thi được biên soạn theo cấu trúc 100% tự luận với 05 bài toán, thời gian học sinh làm bài 90 phút, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm; kỳ thi được diễn ra vào thứ Ba ngày 01 tháng 11 năm 2022. Trích dẫn Đề giữa học kỳ 1 Toán 8 năm 2022 – 2023 trường THCS Giảng Võ – Hà Nội : + Cho bình bình hành ABCD. Gọi I là trung điểm của đoạn thẳng AB, K là trung điểm của đoạn thẳng CD. a) Chứng minh tứ giác AICK là hình bình hành b) Gọi E và F lần lượt là giao điểm của đường thẳng BD với đường thẳng AK và CI. Chứng minh 1 2 EK CF c) Các đường thẳng AF và BC cắt nhau tại điểm M, các đường thẳng CE và AD cắt nhau tại điểm N. Gọi O là giao điểm của đường thẳng AC và BD. Chứng minh ba điểm M O N là ba điểm thẳng hàng. + Giữa hai địa điểm A và B có vướng một cây cổ thụ. Biết rằng DC 90m. Hỏi khoảng cách giữa hai địa điểm A và B bằng bao nhiêu mét? Vì sao? (Học sinh không phải vẽ lại hình). + Cho biểu thức 2 2 P x y xy x y 9 2 6 6 6 2022 với x y là các số nguyên. Tìm giá trị nhỏ nhất của biểu thức P.
Đề giữa học kì 1 Toán 8 năm 2022 - 2023 trường Lê Thánh Tông - TP HCM
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề kiểm tra đánh giá giữa học kì 1 môn Toán 8 năm học 2022 – 2023 trường TH – THCS – THPT Lê Thánh Tông, thành phố Hồ Chí Minh; kỳ thi được diễn ra vào ngày 15 tháng 10 năm 2022. Trích dẫn Đề giữa học kì 1 Toán 8 năm 2022 – 2023 trường Lê Thánh Tông – TP HCM : + Tính giá trị của biểu thức. + Một cửa hàng thời trang có chương trình giảm giá 20% cho tất cả các sản phẩm. Đặc biệt nếu khách hàng nào có thẻ khách hàng thân thiết của cửa hàng thì được giảm giá thêm 10% trên giá đã giảm. a) Chị Nga là khách hàng thân thiết của cửa hàng, chị đã đến cửa hàng mua một chiếc váy có giá niêm yết 800 ngàn đồng. Hỏi chị Nga phải trả bao nhiêu tiền cho chiếc váy đó? b) Ông Đồ cũng là một khách hàng thân thiết của cửa hàng, ông đã mua một chiếc va li và đã phải trả số tiền là 864 ngàn đồng. Hỏi giá ban đầu của chiếc va li đó là bao nhiêu? + Cho tam giác ABC vuông cân tại A. Lấy điểm M bất kỳ thuộc cạnh BC (M khác B và C). Gọi E và F lần lượt là hình chiếu của M trên AB và AC. a) Chứng minh AM = EF. b) Gọi I, K lần lượt là trung điểm của MB, MC. Chứng minh tứ giác EIKF là hình thang vuông. c) Một con rô bốt thu gom rác xuất phát từ vị trí A di chuyển dọc theo các cạnh của tứ giác AEMF một lượt rồi trở về A. Chứng minh rằng độ dài quãng đường con rô bốt di chuyển không phụ thuộc vào vị trí của điểm M trên cạnh BC. Tính quãng đường đó biết độ dài cạnh BC = 20 mét.
Đề giữa học kì 1 Toán 8 năm 2022 - 2023 trường THCS Phúc Xá - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra chất lượng giữa học kì 1 môn Toán 8 năm học 2022 – 2023 trường THCS Phúc Xá, quận Ba Đình, thành phố Hà Nội; đề thi được biên soạn theo cấu trúc đề tự luận 100%, thời gian làm bài 90 phút (không kể thời gian phát đề); đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề giữa học kì 1 Toán 8 năm 2022 – 2023 trường THCS Phúc Xá – Hà Nội : + Cho tam giác ABC có BC = 4cm, các đường trung tuyến BD và CE cắt nhau tại G. Gọi I, K theo thứ tự là trung điểm của GB, GC. 1/ Tính độ dài ED 2/ Chứng minh DE // IK 3/ Chứng minh tứ giác EDKI là hình bình hành. + Để đo khoảng cách giữa hai điểm B và C bị ngăn bởi một cái hồ nước, người ta đóng các cọc ở vị trí A, B, C, M, N như hình vẽ. Người ta đo được MN = 550m. Tính khoảng cách BC? + Phân tích các da thức sau thành nhân tử.
Đề giữa học kỳ 1 Toán 8 năm 2022 - 2023 trường THCS Ngô Sĩ Liên - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề kiểm tra chất lượng giữa học kỳ 1 môn Toán 8 năm học 2022 – 2023 trường THCS Ngô Sĩ Liên, quận Hoàn Kiếm, thành phố Hà Nội. Trích dẫn Đề giữa học kỳ 1 Toán 8 năm 2022 – 2023 trường THCS Ngô Sĩ Liên – Hà Nội : + Cho hình vẽ bên. a) Chứng minh tứ giác ABEF là hình thang vuông. b) Biết AB = 16 cm, CD = 12 cm. Tính EF. + Cho tam giác ABC cân tại A, lấy H là trung điểm của cạnh BC, D là trung điểm của cạnh AC. a) Chứng minh DH // AB. b) Trên tia đối của tia HD lấy điểm E sao cho HD = HE. Chứng minh tứ giác BDCE là hình bình hành và AD = EB. c) Thêm điều kiện gì của tam giác ABC để tứ giác ABHD là hình thang cân? d) Gọi G là giao điểm của AH và BD, I là điểm đối xứng với G qua BC. Chứng minh ba điểm E, I, C thẳng hàng và EC = 3EI. + Cho x + 2y = 3. Tìm giá trị nhỏ nhất của biểu thức S = x2 + y2.