Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề ôn tập Toán 9 tháng 03 năm 2020 trường THPT chuyên Hà Nội Amsterdam

Do ảnh hưởng của tình hình dịch bệnh vi-rút Corona (COVID-19), học sinh khối 9 trường THPT chuyên Hà Nội – Amsterdam vẫn chưa thể đi học trở lại từ sau kỳ nghỉ lễ Tết Nguyên Đán 2020, điều này ảnh hưởng lớn đến việc tiếp thu kiến thức môn Toán 9. Để giúp các em có thể tự ôn tập tại nhà, tổ Toán – Tin học trường THPT chuyên Hà Nội – Amsterdam đã biên soạn bộ đề ôn tập môn Toán 9 giai đoạn tháng 03 năm 2020. Đề ôn tập Toán 9 tháng 03 năm 2020 trường THPT chuyên Hà Nội – Amsterdam gồm có 06 trang với 03 đề, chọn lọc các câu hỏi trắc nghiệm và tự luận từ cơ bản đến nâng cao giúp học sinh khối 9 tự ôn luyện. Trích dẫn đề ôn tập Toán 9 tháng 03 năm 2020 trường THPT chuyên Hà Nội – Amsterdam : + Hai công nhân làm chung một công việc thì sau 5 giờ 50 phút sẽ hoàn thành xong công việc đó. Sau khi làm chung 5 giờ thì người thứ nhất đi làm việc khác trong khi người thứ hai vẫn tiếp tục làm trong 2 giờ nữa mới hoàn thành xong công việc. Hỏi nếu làm riêng thì mỗi người phải mất bao nhiêu thời gian để hoàn thành xong công việc? [ads] + Cho nửa đường tròn đường kính AB. Gọi M là điểm chính giữa của cung AB. Trên cung AM lấy điểm N. Trên tia đối của tia MA lấy điểm D sao cho MD = MB , trên tia đối của tia NB lấy điểm E sao cho NA = NE, trên tia đối của tia MB lấy điểm C sao cho MC = MA. Chứng minh năm điểm A, B, C, D, E cùng thuộc một đường tròn. + Cho tam giác ABC có BC cố định và góc A bằng 0 50 . Gọi D là giao điểm của ba đường phân giác trong của tam giác. Tìm quỹ tích điểm D.

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát Toán 9 lần 3 năm 2020 - 2021 trường THCS Tam Hồng - Vĩnh Phúc
Đề khảo sát Toán 9 lần 3 năm 2020 – 2021 trường THCS Tam Hồng – Vĩnh Phúc gồm 04 câu trắc nghiệm và 05 câu tự luận, thời gian học sinh làm bài thi là 120 phút, đề thi có đáp án + lời giải chi tiết + hướng dẫn chấm điểm. Trích dẫn đề khảo sát Toán 9 lần 3 năm 2020 – 2021 trường THCS Tam Hồng – Vĩnh Phúc : + Cho đường tròn (O, 3cm) và đường tròn (O’, 4cm). Biết độ dài đoạn nối tâm OO’ = 6cm. Khẳng định nào sau đây đúng? A. Hai đường tròn (O) và (O’) tiếp xúc nhau. B. Hai đường tròn (O) và (O’) cắt nhau. C. Hai đường tròn (O) và (O’) ở ngoài nhau. D. Đường tròn (O’) đựng đường tròn (O). + Cho hai đường tròn (O), (O’) tiếp xúc ngoài tại A. Gọi AB là đường kính của đường tròn (O), AC là đường kính của đường tròn (O’), DE là tiếp tuyến chung của hai đường tròn. K là giao điểm của BD và CE. a) Tính số đo DAE. b) Tứ giác ADKE là hình gì? Vì sao? c) Chứng minh AK là tiếp tuyến chung của 2 đường tròn (O) và (O’). d) Gọi M là trung điểm của BC. Chứng minh MK DE. + Cho hàm số bậc nhất: y = (m – 1)x + 1 (m là tham số). a) Tìm m để hàm số nghịch biến trên R. b) Vẽ đồ thị hàm số khi m = -1. c) Tìm m để đồ thị của hàm số đã cho cắt đường thẳng y = x -3 tại điểm có hoành độ bằng -2.
Đề khảo sát Toán 9 lần 2 năm 2020 - 2021 trường THCS Thanh Xuân - Hà Nội
Đề khảo sát Toán 9 lần 2 năm 2020 – 2021 trường THCS Thanh Xuân – Hà Nội gồm 01 trang với 06 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút. Trích dẫn đề khảo sát Toán 9 lần 2 năm 2020 – 2021 trường THCS Thanh Xuân – Hà Nội : + Một máy bay cất cánh theo phương có góc nghiêng là 23°. Hỏi muốn đạt độ cao là 2500m, máy bay phải bay một đoạn đường là bao nhiêu mét? (làm tròn đến mét). + Cho tam giác đều ABC nội tiếp đường tròn tâm O. Trên cạnh BC lấy điểm N, gọi E và F theo thứ tự là hình chiếu của N lên AB, AC. Gọi D là trung điểm của ВC. a) Chứng minh rằng bốn điểm A, E, N, F cùng thuộc một đường tròn. Xác định tâm I của đường tròn đó. b) Chứng minh rằng BN.BD = BE.BA. c) Chứng minh rằng ED = FD. d) Gọi H là giao điểm của hai đường chéo của tứ giác EIFD. Chứng minh O, H, N thẳng hàng. + Cho xy + yz + zx = 1. Tìm giá trị nhỏ nhất của P = 3(x2 + y2) + z2.
Đề khảo sát Toán 9 tháng 11 năm 2020 trường THCS Thanh Am - Hà Nội
Đề khảo sát Toán 9 tháng 11 năm 2020 trường THCS Thanh Am – Hà Nội được biên soạn theo hình thức đề tự luận, đề gồm 01 trang với 05 bài toán, thời gian làm bài 90 phút. Trích dẫn đề khảo sát Toán 9 tháng 11 năm 2020 trường THCS Thanh Am – Hà Nội : + Giải bài toán bằng cách lập phương trình: Hưởng ứng phong trào trồng cây xanh vì môi trường xanh sạch đẹp, một chi đoàn thanh niên dự định trồng 400 cây xanh trong một thời gian quy định. Mỗi ngày chi đoàn đã trồng vượt mức kế hoạch 10 cây. Do vậy chi đoàn đã hoàn thành công việc sớm hơn thời gian quy định 2 ngày. Hỏi theo kế hoạch mỗi ngày chi đoàn phải trồng bao nhiêu cây? + Người ta muốn xây dựng một cây cầu bắc qua một hồ nước hình tròn có bán kính 2 km (hình vẽ bên). Hãy tính chiều dài cây cầu để khoảng cách từ cây cầu đến khoảng tâm của hồ nước là 1732m (kết quả làm tròn đến chữ số hàng đơn vị). + Cho đường thẳng d: y = (m + 2)x + m với m khác 2. 1) Tìm m để đường thẳng d đi qua M(1;0). 2) Vẽ đồ thị hàm số d với m tìm được ở câu 1. 3) Tìm m để đường thẳng d cắt Ox, Oy tại điểm A và điểm B sao cho diện tích tam giác OAB bằng 1/2.
Đề kiểm tra chất lượng HK1 Toán 9 năm 2020 2021 trường chuyên Hà Nội Amsterdam
Thứ Tư ngày 11 tháng 11 năm 2020, trường THPT chuyên Hà Nội – Amsterdam, quận Cầu Giấy, thành phố Hà Nội tổ chức kỳ thi kiểm tra chất lượng học kỳ 1 môn Toán lớp 9 năm học 2020 – 2021. Đề kiểm tra chất lượng HK1 Toán 9 năm 2020 – 2021 trường chuyên Hà Nội – Amsterdam gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 90 phút. Trích dẫn đề kiểm tra chất lượng HK1 Toán 9 năm 2020 – 2021 trường chuyên Hà Nội – Amsterdam : + Một chiếc thang dài 7m dựa vào bức tường thẳng đứng, tạo với mặt đất một góc 50°. Nếu đẩy chân của chiếc thang đó gần về phía tường đến khi thang tạo với mặt đất góc 65° (xem hình vẽ), hỏi đầu thang ở trên tường đã dịch chuyển lên một đoạn là bao nhiêu? (kết quả các phép tính lấy hai chữ số sau dấu phẩy). + Cho tam giác ABC có BAC > 90°, đường tròn tâm I nội tiếp tam giác ABC và tiếp xúc với các cạnh AB, BC và CA lần lượt tại P, Q và R. Gọi M, N theo thứ tự là trung điểm của các cạnh CA, AB. Các đường thẳng MN, PQ cắt nhau ở D. a) Cho biết độ dài các cạnh AB, BC và CA của tam giác tương ứng bằng 4 cm, 7 cm và 5 cm, tính độ dài của đoạn AP theo cm. b) Chứng minh các tam giác NDP và MCD là các tam giác cân. c) Chứng minh rằng các điểm D, I, C thẳng hàng. d) Gọi H là chân đường vuông góc kẻ từ Q đến PR. Chứng minh PHB = CHR. + Cho a, b là các số thực trái dấu thỏa mãn a^2 >= ab + 2b^2. Tìm giá trị lớn nhất của biểu thức P = (a^2 + 2b^2)/ab.