Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề đường trung bình của tam giác, của hình thang

Nội dung Chuyên đề đường trung bình của tam giác, của hình thang Bản PDF - Nội dung bài viết Chuyên Đề Đường Trung Bình của Tam Giác và Hình Thang Chuyên Đề Đường Trung Bình của Tam Giác và Hình Thang Chuyên đề về đường trung bình của tam giác và hình thang là một tài liệu quan trọng giúp học sinh hiểu rõ về các khái niệm cơ bản và áp dụng chúng vào giải các dạng bài tập phức tạp. Tài liệu này bao gồm 23 trang, tóm tắt lý thuyết về trọng tâm, phân dạng và cung cấp hướng dẫn chi tiết từng bước giải các dạng toán liên quan đến đường trung bình của tam giác và hình thang. Ngoài ra, tài liệu còn tuyển chọn các bài tập từ cơ bản đến nâng cao, đồng thời cung cấp đáp án và lời giải chi tiết để hỗ trợ học sinh trong quá trình học tập chương trình Hình học lớp 8 chương 1 về Tứ giác. I. Tóm Tắt Lý Thuyết 1. Đường Trung Bình của Tam Giác - Định nghĩa: Đường trung bình của tam giác là đoạn thẳng nối trung điểm hai cạnh của tam giác. - Định lí 1: Đường thẳng qua trung điểm một cạnh của tam giác và song song với cạnh thứ hai cũng đi qua trung điểm của cạnh thứ ba. - Định lí 2: Đường trung bình của tam giác song song với cạnh thứ ba và có chiều dài bằng nửa cạnh đó. 2. Đường Trung Bình của Hình Thang - Định nghĩa: Đường trung bình của hình thang là đoạn thẳng nối trung điểm hai cạnh bên của hình thang. - Định lí 3: Đường thẳng qua trung điểm một cạnh bên của hình thang và song song với hai đáy thì cũng đi qua trung điểm của cạnh bên thứ hai. - Định lí 4: Đường trung bình của hình thang song song với hai đáy và có chiều dài bằng nửa tổng độ dài hai đáy. II. Bài Tập và Các Dạng Toán A. Các Dạng Bài Minh Họa Cơ Bản và Nâng Cao - Dạng 1: Sử dụng định nghĩa và định lí về đường trung bình của tam giác để chứng minh. - Dạng 2: Sử dụng định nghĩa và định lí về đường trung bình của hình thang để chứng minh. - Dạng 3: Sử dụng phối hợp đường trung bình của tam giác và hình thang để chứng minh. - Dạng 4: Tổng hợp. B. Các Dạng Bài Nâng Cao Phát Triển Tư Duy - Đường trung bình của tam giác và hình thang. C. Phiếu Bài Tự Luyện Cơ Bản và Nâng Cao Đồng thời, tài liệu cung cấp phiếu bài tập tự luyện dành cho học sinh từ cơ bản đến nâng cao, giúp họ rèn luyện kỹ năng và phát triển tư duy toán học một cách hiệu quả. Trên cơ sở nội dung trên, việc hiểu rõ về đường trung bình của tam giác và hình thang sẽ giúp học sinh áp dụng linh hoạt vào các bài toán hình học khác nhau, từ những dạng cơ bản đến phức tạp, từ đó nang cao khả năng giải quyet vấn đề và xây dựng nền móng vững chắc cho kiến thức toán học của mình.

Nguồn: sytu.vn

Đọc Sách

Chuyên đề tính chất đường phân giác của tam giác
Tài liệu gồm 11 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề tính chất đường phân giác của tam giác, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 3: Tam giác đồng dạng. I. KIẾN THỨC CƠ BẢN 1. Định lý: Trong tam giác, đường phân giác của một góc chia cạnh đối diện thành hai đoạn thẳng tỉ lệ với hai cạnh kề hai đoạn ấy. 2. Chú ý: + Định lý vẫn đúng với đối với đường phân giác góc ngoài của tam giác. + Các định lý trên có định lý đảo. II. BÀI TẬP MINH HỌA A. DẠNG BÀI CƠ BẢN DẠNG 1. Tính độ dài đoạn thẳng. + Áp dụng tính chất đường phân giác, lập tỉ lệ thức giữa các đoạn thẳng và sử dụng kĩ thuật đại số hóa hình học. + Áp dụng định lí Py-ta-go. DẠNG 2.Tính tỉ số độ dài, tỉ số diện tích hai tam giác. + Áp dụng tính chất đường phân giác, lập tỉ lệ thức giữa các đoạn thẳng. + Sử dụng kĩ thuật đại số hóa hình học. Công thức và kết quả thu được từ công thức tính diện tích tam giác. B. DẠNG BÀI NÂNG CAO
Chuyên đề định lí đảo và hệ quả của định lí Ta-lét
Tài liệu gồm 14 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề định lí đảo và hệ quả của định lí Ta-lét, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 3: Tam giác đồng dạng. I. KIẾN THỨC CẦN NHỚ 1. Định lí Ta-lét đảo: Nếu một đường thẳng cắt hai cạnh của một tam giác và định ra trên hai cạnh này những đoạn thẳng tương ứng tỉ lệ thì đường thẳng đó song song với cạnh còn lại của tam giác. 2. Hệ quả của định lí Ta-lét: Nếu một đường thẳng cắt hai cạnh của một tam giác và song song với cạnh còn lại thì nó tạo thành một tam giác mới có ba cạnh tỉ lệ với ba cạnh của tam giác đã cho. II. BÀI TẬP MINH HỌA A. CÁC DẠNG TOÁN CƠ BẢN DẠNG 1. Tính độ dài đoạn thẳng. Chia đoạn thẳng cho trước thành các phần bằng nhau. 1. Tính độ dài đoạn thẳng: + Xác định đường thẳng song song với một cạnh của tam giác. + Áp dụng hệ quả của định lí Ta-lét để lập tỉ lệ thức của các đoạn thẳng. + Thay số vào hệ thức rồi giải phương trình. 2. Chia đoạn thẳng cho trước thành các phần bằng nhau cách sử dụng hệ quả của định lí Ta-lét hoặc tính chất của đường thẳng song song cách đều. DẠNG 2. Chứng minh hệ thức hình học. + Xác định đường thẳng song song với một cạnh của tam giác. + Áp dụng hệ quả của định lí Ta-lét để lập tỉ lệ thức của các đoạn thẳng. + Sử dụng các tính chất của tỉ lệ thức hoặc cộng hay nhân theo vế các đẳng thức hình học. DẠNG 3. Chứng minh hai đường thẳng song song. + Sử dụng định lí Ta-lét, lập tỉ lệ thức giữa các đoạn thẳng. + Áp dụng định lí Ta-lét đảo, kết luận hai đường thẳng song song. DẠNG 4. Vẽ thêm đường thẳng song song để chứng minh hệ thức hình học, tính tỉ số hai đoạn thẳng. + Vẽ thêm đường thẳng song song. + Áp dụng hệ quả của định lí Ta-lét để lập tỉ lệ thức giữa các đoạn thẳng. + Biến đổi tỉ lệ thức. B. DẠNG BÀI NÂNG CAO TỔNG HỢP TALET VÀ LIÊN QUAN
Chuyên đề định lí Ta-lét trong tam giác
Tài liệu gồm 11 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề định lí Ta-lét trong tam giác, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 3: Tam giác đồng dạng. I. KIẾN THỨC CẦN NHỚ II. BÀI TẬP MINH HỌA A. CÁC DẠNG TOÁN CƠ BẢN DẠNG 1. Tính tỉ số hai đoạn thẳng. Chia đoạn thẳng theo tỉ số cho trước. 1. Sử dụng định nghĩa tỉ số của hai đoạn thẳng. 2. Một điểm C thuộc đoạn thẳng AB (hoặc đường thẳng AB), được gọi là chia đoạn thẳng AB theo tỉ số m/n khác 1 (m, n là các số dương), nếu ta có: CA/CB =m/n. 3. Sử dụng kĩ thuật đại số hóa hình học. 4. Lập tỉ lệ thức giữa các đoạn thẳng tỉ lệ rồi áp dụng tính chất của dãy tỉ số bằng nhau. DẠNG 2.Tính độ dài đoạn thẳng, dựng đoạn thẳng tỉ lệ thứ tư. 1. Tính độ dài đoạn thẳng: + Áp dụng định lí Ta-lét để lập hệ thức của các đoạn thẳng tỉ lệ. + Xác định đường thẳng song song với một cạnh của tam giác. + Thay số vào hệ thức rồi giải phương trình. 2. Trong bốn đoạn thẳng tỉ lệ, dựng đoạn thẳng thứ tự khi biết độ dài của ba đoạn kia: + Đặt ba đoạn thẳng trên hai cạnh của một góc. + Dựng đường thẳng song song để xác định đoạn thẳng thứ tư. DẠNG 3. Chứng minh các hệ thức hình học. 1. Xác định đường thẳng song song với một cạnh của tam giác. 2. Áp dụng định lí Ta-lét để lập hệ thức của các đoạn thẳng tỉ lệ. 3. Sử dụng các tính chất của tỉ lệ thức hoặc cộng theo vế các đẳng thức hình học. DẠNG 4. Vẽ thêm đường thẳng song song để tính tỉ số hai đoạn thẳng. 1. Vẽ thêm đường thẳng song song. 2. Sử dụng kĩ thuật đại số hóa hình học. 3. Áp dụng định lí Ta-lét. B. PHIẾU BÀI TỰ LUYỆN DẠNG BÀI CƠ BẢN
Chuyên đề diện tích đa giác
Tài liệu gồm 06 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề diện tích đa giác, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 2: Đa giác, diện tích đa giác. I. TÓM TẮT LÝ THUYẾT Để tính diện tích đa giác, ta thường chia đa giác đó thành các tam giác, các tứ giác tính được diện tích rồi tính tổng các diện tích đó; hoặc tạo ra một đa giác nào đó có chứa đa giác ấy rồi tính hiệu các diện tích. II. BÀI TẬP VÀ CÁC DẠNG TOÁN A. CÁC DẠNG BÀI MINH HỌA Dạng 1. Tính diện tích đa giác. Phương pháp giải: Đưa về tính tổng các diện tích hoặc hiệu các diện tích. Dạng 2. Tính diện tích của đa giác bất kì. Phương pháp giải: Đưa về tính tổng các diện tích hoặc hiệu các diện tích. Dạng 3. Dựng tam giác có diện tích bằng diện tích một đa giác. Phương pháp giải: Thường kẻ đường thẳng song song với một đường thẳng cho trước để tạo ra một tam giác mới có diện tích bằng diện tích một tam giác cho trước. B. PHIẾU BÀI TỰ LUYỆN