Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 sở GD ĐT Phú Yên

Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 sở GD ĐT Phú Yên Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (chuyên) năm 2023-2024 sở GD&ĐT Phú Yên Đề tuyển sinh môn Toán (chuyên) năm 2023-2024 sở GD&ĐT Phú Yên Chào đón đến với đề thi chính thức tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2023-2024 tại sở GD&ĐT Phú Yên. Đề thi này là bài thi hình thức tự luận, bao gồm 6 bài toán trên 1 trang với thời gian làm bài là 150 phút. Trích dẫn từ đề thi: 1. Cho đoạn thẳng AB với M là trung điểm. Trên đường trung trực Mt của đoạn thẳng AB lấy điểm I bất kì. Vẽ tia Ax sao cho AI là phân giác góc BAx. Đường thẳng BI cắt Ax tại N. Gọi C là điểm đối xứng của A qua N, H là hình chiếu vuông góc của C lên AB. a) Chứng minh tam giác NHB cân. b) Chứng minh đẳng thức: BH^2 = HI*BN. c) Khi điểm I di chuyển trên đường trung trực Mt đến vị trí làm cho tam giác ABC vuông tại C, tính tỉ số AB/AC. 2. Cho phương trình ax^2 + bx + c = 0 (a ≠ 0) với a, b, c là số thực thỏa 2a - b + c = 0. Chứng minh rằng phương trình luôn có 2 nghiệm phân biệt và 2 nghiệm không thể đều dương. 3. Cho tam giác ABC vuông tại A. Gọi D là trung điểm của AB, H là hình chiếu vuông góc của A lên đường thẳng DC. Đường thẳng qua C vuông góc với BC cắt đường thẳng AB tại E. Gọi I là hình chiếu vuông góc của E lên DC. a) Chứng minh BH vuông góc với AI. b) Đường thẳng qua B vuông góc với BH cắt đường thẳng DC tại K. Chứng minh tứ giác BCEK nội tiếp.

Nguồn: sytu.vn

Đọc Sách

Tuyển tập 21 đề thi thử tuyển sinh vào lớp 10 năm 2017 môn Toán
Tài liệu gồm 32 trang tuyển tập 21 đề thi thử tuyển sinh vào lớp 10 năm 2017 môn Toán. Một số đề có hướng dẫn giải.
Đề thi thử tuyển sinh vào lớp 10 năm 2017 môn Toán Phòng GD và ĐT Tam Đảo - Vĩnh Phúc lần 1
Đề thi thử tuyển sinh vào lớp 10 năm 2017 môn Toán Phòng GD và ĐT Tam Đảo – Vĩnh Phúc lần 1 gồm 4 câu hỏi trắc nghiệm và 5 câu tự luận, có đáp án và lời giải chi tiết. Trích một số bài toán trong đề: + Hai vòi nước cùng chảy vào một cái bể không có nước thì trong 5 giờ sẽ đầy bể. Nếu vòi thứ nhất chảy trong 3 giờ và vòi thứ 2 chảy trong 4 giờ thì được 2/3 bể nước. Hỏi nếu mỗi vòi chảy một mình thì trong bao lâu mới đầy bể. [ads] + Cho đường tròn (O), M là một điểm nằm ngoài đường tròn (O). Qua M kẻ hai tiếp tuyến MA, MB đến đường tròn (O) với A, B là các tiếp điểm; MPQ là một cát tuyến không đi qua tâm của đường tròn (O), P nằm giữa M và Q. Qua P kẻ đường thẳng vuông góc với OA cắt AB, AQ tương ứng tại R, S. Gọi trung điểm đoạn PQ là N. Chứng minh rằng: a) Các điểm M, A, N, O, B cùng thuộc một đường tròn, chỉ rõ bán kính của đường tròn đó. b) PR = RS.
Đề thi thử tuyển sinh vào lớp 10 năm 2017 môn Toán trường THCS An Đà - Hải Phòng lần 1
Đề thi thử tuyển sinh vào lớp 10 năm 2017 môn Toán trường THCS An Đà – Hải Phòng lần 1 gồm 5 câu tự luận. Trích một số bài toán trong đề: + Chào mừng Lễ hội Hoa phượng đỏ năm 2017. Hội mĩ thuật Hải Phòng thiết kế một Pano quảng cáo có dạng là một hình chữ nhật. Hình chữ nhật đó có chu vì bằng 68 m và diện tích bằng 273 m2. Em hãy cho biết kích thước của tấm Pano quảng cáo hình chữ nhật ở trên có đạt “Tỉ lệ vàng” hay không ? (Kết quả làm tròn đến chữ số thập phân thứ hai). + Cho đường tròn (O; R) và dây BC cố định không đi qua tâm O. A là điểm bất kỳ trên cung lớn BC. Ba đường cao AD, BE, CF của tam giác ABC cắt nhau tại điểm H. [ads] a) Chứng minh các tứ giác HDBF, BCEF nội tiếp b) Chứng minh DA là phân giác của góc EDF c) Gọi K là điểm đối xứng của A qua tâm O. Chứng minh HK đi qua trung điểm của đoạn BC d) Giả sử góc BAC bằng 60 độ. Chứng minh tam giác AHO là tam giác cân
Tuyển tập 21 đề thi thử tuyển sinh vào năm 2017 môn Toán
Nội dung Tuyển tập 21 đề thi thử tuyển sinh vào năm 2017 môn Toán Bản PDF - Nội dung bài viết Tuyển tập 21 đề thi thử tuyển sinh vào năm 2017 môn Toán Tuyển tập 21 đề thi thử tuyển sinh vào năm 2017 môn Toán Bộ tài liệu này bao gồm 32 trang với 21 đề thi thử tuyển sinh vào lớp 10 năm 2017 môn Toán. Trong số các đề thi có hướng dẫn giải chi tiết giúp cho việc học tập và ôn tập hiệu quả hơn.