Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh chuyên môn Toán năm 2022 trường ĐHSP Hà Nội

Nội dung Đề tuyển sinh chuyên môn Toán năm 2022 trường ĐHSP Hà Nội Bản PDF - Nội dung bài viết Đề thi tuyển sinh lớp 10 chuyên môn Toán năm 2022 trường ĐHSP Hà Nội Đề thi tuyển sinh lớp 10 chuyên môn Toán năm 2022 trường ĐHSP Hà Nội Chào các thầy cô và các em học sinh lớp 9, Sytu xin giới thiệu đến quý vị đề thi chính thức tuyển sinh vào lớp 10 THPT chuyên môn Toán năm 2022 tại trường Đại học Sư Phạm Hà Nội. Đề thi này sẽ được sử dụng cho mọi thí sinh dự tuyển vào các chuyên ngành, Toán chung, Toán điều kiện và vòng 1 của kỳ thi. Đề thi sẽ diễn ra vào thứ Tư ngày 01 tháng 06 năm 2022. Với sự chuẩn bị cẩn thận, đề thi sẽ có đáp án và lời giải chi tiết do các tác giả uy tín thực hiện, bao gồm Nguyễn Duy Khương, Trịnh Đình Triển, TQĐ, Nguyễn Khang, Nguyễn Hoàng Việt. Dưới đây là một số câu hỏi mẫu trong đề tuyển sinh: Trong mặt phẳng tọa độ Oxy, hãy viết phương trình đường thẳng (d): y = ax + b biết (d) đi qua A(2;−1) và song song với đường thẳng y = −3x + 1. Một cửa hàng kinh doanh điện máy sau khi nhập về chiếc tivi, đã bán chiếc tivi và thu được lãi 10% của giá nhập. Nếu cửa hàng tăng giá bán thêm 5% và chiết khấu cho khách 245000 đồng, lãi sẽ lên 12% của giá nhập. Hãy tìm giá tiền khi nhập về của chiếc tivi đó. Cho tam giác ABC đều nội tiếp (O), điểm D thuộc cung AB nhỏ (D khác A,B). Các tiếp tuyến tại B,C của (O) cắt AD theo thứ tự tại E,G. Gọi I là giao điểm của CE và BG. a) Chứng minh rằng △EBC ∽ △BCG. b) Tính số đo góc BIC. Từ đó chỉ ra BIDE là tứ giác nội tiếp. c) Gọi DI ∩ BC = K. Chứng minh rằng: BK2 = KI.KD. Hãy chuẩn bị tâm lý và kiến thức tốt để chinh phục đề thi tuyển sinh năm nay. Chúc các em thành công!

Nguồn: sytu.vn

Đọc Sách

Đề thi thử Toán vào lớp 10 lần 2 năm 2021 trường chuyên Đại học Sư phạm Hà Nội
Đề thi thử Toán vào lớp 10 lần 2 năm 2021 trường chuyên Đại học Sư phạm Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 90 phút. Trích dẫn đề thi thử Toán vào lớp 10 lần 2 năm 2021 trường chuyên Đại học Sư phạm Hà Nội : + Một nhà máy theo kế hoạch phải sản xuất 20000 hộp khẩu trang trong thời gian quy định (số hộp khẩu trang nhà máy sản xuất được trong mỗi ngày là bằng nhau). Để đẩy nhanh tiến độ trong công cuộc phòng chống đại dịch COVID- 19, mỗi ngày nhà máy đã sản xuất nhiều hơn kế hoạch 100 hộp khẩu trang. Do đó, nhà máy đã hoàn thành công việc trước thời hạn 10 ngày. Hỏi theo kế hoạch, mỗi ngày nhà máy phải sản xuất bao nhiêu hộp khẩu trang? + Cho phương trình x2 + (1 – m)x – 2m – 4 = 0 với m là tham số. 1) Chứng minh rằng phương trình luôn có hai nghiệm phân biệt x1, x2 với mọi giá trị của tham số m. Tính giá trị của biểu thức T = (x1 + 2)(x2 + 2). + Cho đường tròn tâm O có hai đường kính AB và CD vuông góc với nhau. Gọi M là điểm tùy ý trên cung nhỏ AC (M không trùng với A và C). Tia DM cắt các đường thẳng AB, AC và BC lần lượt tại N, P và Q. Gọi H là hình chiếu của điểm C trên đường thẳng AQ. 1) Chứng minh rằng tứ giác AOCH nội tiếp và tia HO là tia phân giác của AHC. 2) Chứng minh PA/PC = HA/HC. 3) Chứng minh.
Đề thi thử Toán vào lớp 10 lần 2 năm 2021 - 2022 trường Thái Thịnh - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi thử Toán vào lớp 10 lần 2 năm học 2021 – 2022 trường THCS Thái Thịnh, quận Đống Đa, thành phố Hà Nội; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi thử Toán vào lớp 10 lần 2 năm 2021 – 2022 trường Thái Thịnh – Hà Nội : + Một lon nước ngọt hình trụ có đường kính đáy bằng 6cm, chiều cao 10cm. Tính thể tích của lon nước. (Bỏ qua bề dày của lon nước). + Trong mặt phẳng tọa độ Oxy cho đường thẳng (d): y 3x m 1 và parabol (P): 2 y x. a) Tìm tọa độ giao điểm của (d) và (P) khi m = 3. b) Tìm tất cả các giá trị của m để (d) cắt (P) tại hai điểm có hoành độ x1, x2 thỏa mãn 1 2 x 3x. + Cho đường tròn (O;R) và dây BC cố định. Trên tia đối của tia BC lấy điểm A. Kẻ các tiếp tuyến AM, AN với đường tròn (O) (M và N là các tiếp điểm, N thuộc cung BC nhỏ). Gọi H là trung điểm của dây BC. 1) Chứng minh bốn điểm A, M, O, H cùng thuộc một đường tròn. 2) MN cắt OA tại điểm I. Chứng minh rằng AI.AO = AM2. 3) Tia MH cắt đường tròn (O) tại điểm thứ hai D. Giả sử 3 điểm A, B, C cố định, đường tròn (O) đi động. Chứng minh ND//AC và đường thẳng MN luôn đi qua một điểm cố định.
Đề thi thử Toán vào lớp 10 năm 2021 - 2022 lần 3 trường Nguyễn Công Trứ - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi thử Toán vào lớp 10 năm học 2021 – 2022 lần 3 trường THCS Nguyễn Công Trứ, quận Ba Đình, thành phố Hà Nội; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi thử Toán vào lớp 10 năm 2021 – 2022 lần 3 trường Nguyễn Công Trứ – Hà Nội : + Một lon nước ngọt hình trụ có đường kính đáy là 5 (cm), độ dài trục là 12 (cm). Tính diện tích toàn phần của lon nước hình trụ đó? + Trong cùng mặt phẳng tọa độ Oxy, cho: Parabol (P): 𝑦𝑦 = 𝑥𝑥2 và đường thẳng (d): 𝑦𝑦 = (𝑚𝑚 − 1) 𝑥𝑥 + 𝑚𝑚2 − 2𝑚𝑚 + 3. a) Chứng minh (d) luôn cắt (P) tại hai điểm phân biệt với mọi giá trị của m. b) Giả sử (d) cắt (P) tại hai điểm phân biệt A, B. Tìm m để tam giác OAB cân tại O. Khi đó tính diện tích tam giác OAB với m vừa tìm được. + Cho tam giác ABC nhọn, nội tiếp (O). Gọi D và E lần lượt là các điểm chính giữa cung nhỏ AC và cung nhỏ AB. Đường thẳng BD và CE cắt nhau tại F. Đường thẳng DE cắt AB và AC lần lượt tại I và K. a) Chứng minh: Tam giác EBF cân tại E. b) Chứng minh: Tứ giác EBFI nội tiếp được; từ đó suy ra IF // AC. c) Tứ giác AIFK là hình gì? Tại sao? d) Tam giác ABC cần thêm điều kiện gì để tứ giác AEFD là hình thoi và có diện tích gấp 3 lần diện tích tứ giác AIFK.
Đề thi thử vào lớp 10 môn Toán năm 2021 - 2022 trường THCS Phù Linh - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử vào lớp 10 môn Toán năm học 2021 – 2022 trường THCS Phù Linh, huyện Sóc Sơn, thành phố Hà Nội; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm; kỳ thi được diễn ra vào thứ Bảy ngày 22 tháng 05 năm 2021. Trích dẫn đề thi thử vào lớp 10 môn Toán năm 2021 – 2022 trường THCS Phù Linh – Hà Nội : + Trong mặt phẳng tọa độ Oxy cho parabol (P): 2y = −x và đường thẳng (d): y = mx − m − 2 (m là tham số). a) Với m = −2 , tìm tọa độ giao điểm của đường thẳng (d) và parabol (P). b) Tìm tất cả các giá trị của m để đường thẳng (d) cắt parabol (P) tại hai điểm biệt có hoành độ x1, x2 thỏa mãn x1 − x2 = 20. + Cho tam giác ABC nhọn nội tiếp đường tròn (O; R). Ba đường cao AD, BE, CF của tam giác ABC cùng đi qua trực tâm H. Kẻ đường kính AK của đường tròn (O; R). Gọi M là hình chiếu vuông góc của C trên AK. 1) Chứng minh tứ giác BFEC nội tiếp được đường tròn. 2) Chứng minh AB. AC = 2R.AD và MD // BK. 3) Giả sử BC là dây cung cố định của đường tròn (O; R) và A di động trên cung lớn BC. Tìm vị trí điểm A để diện tích tam giác AEH lớn nhất. + Cho hai số thực dương a, b thỏa mãn điều kiện a + b ≥ 3. Tìm giá trị lớn nhất của biểu thức a b M a b 2 2 1..