Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát hè Toán 9 năm 2022 - 2023 trường THCS Nam Hồng - Nam Định

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp đề kiểm tra khảo sát hè môn Toán 9 năm học 2022 – 2023 trường THCS Nam Hồng, huyện Nam Trực, tỉnh Nam Định; đề thi gồm 08 câu trắc nghiệm (20% số điểm) và 05 câu tự luận (80% số điểm), thời gian học sinh làm bài thi là 120 phút (không kể thời gian phát đề). Trích dẫn đề khảo sát hè Toán 9 năm 2022 – 2023 trường THCS Nam Hồng – Nam Định : + Cho ABC có đường cao AH. Nếu BC không đổi còn đường cao AH tăng lên gấp 2 lần thì diện tích ABC sẽ: A. Tăng lên 2 lần B. Giảm đi 2 lần C. Không đổi D. Tăng lên 4 lần. + Giải bài toán bằng cách lập phương trình: Trong đợt thi giai đoạn 1, hai lớp 9A và 9B có 75 học sinh đạt yêu cầu. Trong đợt thi giai đoạn 2, do nỗ lực học tập lớp 9A vượt mức 10%, lớp 9B vượt mức 20% so với giai đoạn 1 nên cả hai lớp có 86 học sinh đạt yêu cầu. Tính xem trong đợt thi giai đoạn 2 mỗi lớp có bao nhiêu học sinh đạt yêu cầu? + Cho tam giác ABC có ba góc nhọn. Các đường cao AK, BM, CN của tam giác ABC cắt nhau tại H. a. Chứng minh b. Qua B kẻ đường thẳng vuông góc với AB và qua C kẻ đường thẳng vuông góc với AC, hai đường thẳng này cắt nhau tại D. Chứng minh tứ giác BHCD là hình bình hành. c. Gọi G là trọng tâm của ABC; O là trung điểm của AD. Chứng minh ba điểm H, G, O thẳng hàng.

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát Toán 9 năm 2020 - 2021 trường Hoàng Hoa Thám - Hà Nội
Đề khảo sát chất lượng Toán 9 năm học 2020 – 2021 trường THCS Hoàng Hoa Thám – Hà Nội gồm 01 trang với 05 bài toán tự luận, thời gian học sinh làm bài thi là 90 phút.
Đề khảo sát Toán 9 lần 3 năm 2020 - 2021 trường THCS Tam Hồng - Vĩnh Phúc
Đề khảo sát Toán 9 lần 3 năm 2020 – 2021 trường THCS Tam Hồng – Vĩnh Phúc gồm 04 câu trắc nghiệm và 05 câu tự luận, thời gian học sinh làm bài thi là 120 phút, đề thi có đáp án + lời giải chi tiết + hướng dẫn chấm điểm. Trích dẫn đề khảo sát Toán 9 lần 3 năm 2020 – 2021 trường THCS Tam Hồng – Vĩnh Phúc : + Cho đường tròn (O, 3cm) và đường tròn (O’, 4cm). Biết độ dài đoạn nối tâm OO’ = 6cm. Khẳng định nào sau đây đúng? A. Hai đường tròn (O) và (O’) tiếp xúc nhau. B. Hai đường tròn (O) và (O’) cắt nhau. C. Hai đường tròn (O) và (O’) ở ngoài nhau. D. Đường tròn (O’) đựng đường tròn (O). + Cho hai đường tròn (O), (O’) tiếp xúc ngoài tại A. Gọi AB là đường kính của đường tròn (O), AC là đường kính của đường tròn (O’), DE là tiếp tuyến chung của hai đường tròn. K là giao điểm của BD và CE. a) Tính số đo DAE. b) Tứ giác ADKE là hình gì? Vì sao? c) Chứng minh AK là tiếp tuyến chung của 2 đường tròn (O) và (O’). d) Gọi M là trung điểm của BC. Chứng minh MK DE. + Cho hàm số bậc nhất: y = (m – 1)x + 1 (m là tham số). a) Tìm m để hàm số nghịch biến trên R. b) Vẽ đồ thị hàm số khi m = -1. c) Tìm m để đồ thị của hàm số đã cho cắt đường thẳng y = x -3 tại điểm có hoành độ bằng -2.
Đề khảo sát Toán 9 lần 2 năm 2020 - 2021 trường THCS Thanh Xuân - Hà Nội
Đề khảo sát Toán 9 lần 2 năm 2020 – 2021 trường THCS Thanh Xuân – Hà Nội gồm 01 trang với 06 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút. Trích dẫn đề khảo sát Toán 9 lần 2 năm 2020 – 2021 trường THCS Thanh Xuân – Hà Nội : + Một máy bay cất cánh theo phương có góc nghiêng là 23°. Hỏi muốn đạt độ cao là 2500m, máy bay phải bay một đoạn đường là bao nhiêu mét? (làm tròn đến mét). + Cho tam giác đều ABC nội tiếp đường tròn tâm O. Trên cạnh BC lấy điểm N, gọi E và F theo thứ tự là hình chiếu của N lên AB, AC. Gọi D là trung điểm của ВC. a) Chứng minh rằng bốn điểm A, E, N, F cùng thuộc một đường tròn. Xác định tâm I của đường tròn đó. b) Chứng minh rằng BN.BD = BE.BA. c) Chứng minh rằng ED = FD. d) Gọi H là giao điểm của hai đường chéo của tứ giác EIFD. Chứng minh O, H, N thẳng hàng. + Cho xy + yz + zx = 1. Tìm giá trị nhỏ nhất của P = 3(x2 + y2) + z2.
Đề khảo sát Toán 9 tháng 11 năm 2020 trường THCS Thanh Am - Hà Nội
Đề khảo sát Toán 9 tháng 11 năm 2020 trường THCS Thanh Am – Hà Nội được biên soạn theo hình thức đề tự luận, đề gồm 01 trang với 05 bài toán, thời gian làm bài 90 phút. Trích dẫn đề khảo sát Toán 9 tháng 11 năm 2020 trường THCS Thanh Am – Hà Nội : + Giải bài toán bằng cách lập phương trình: Hưởng ứng phong trào trồng cây xanh vì môi trường xanh sạch đẹp, một chi đoàn thanh niên dự định trồng 400 cây xanh trong một thời gian quy định. Mỗi ngày chi đoàn đã trồng vượt mức kế hoạch 10 cây. Do vậy chi đoàn đã hoàn thành công việc sớm hơn thời gian quy định 2 ngày. Hỏi theo kế hoạch mỗi ngày chi đoàn phải trồng bao nhiêu cây? + Người ta muốn xây dựng một cây cầu bắc qua một hồ nước hình tròn có bán kính 2 km (hình vẽ bên). Hãy tính chiều dài cây cầu để khoảng cách từ cây cầu đến khoảng tâm của hồ nước là 1732m (kết quả làm tròn đến chữ số hàng đơn vị). + Cho đường thẳng d: y = (m + 2)x + m với m khác 2. 1) Tìm m để đường thẳng d đi qua M(1;0). 2) Vẽ đồ thị hàm số d với m tìm được ở câu 1. 3) Tìm m để đường thẳng d cắt Ox, Oy tại điểm A và điểm B sao cho diện tích tam giác OAB bằng 1/2.