Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề cuối học kì 1 (HK1) lớp 8 môn Toán năm 2023 2024 trường THCS Quảng Hợp Quảng Bình

Nội dung Đề cuối học kì 1 (HK1) lớp 8 môn Toán năm 2023 2024 trường THCS Quảng Hợp Quảng Bình Bản PDF - Nội dung bài viết Đề cuối học kì 1 môn Toán lớp 8 năm 2023 - 2024 Đề cuối học kì 1 môn Toán lớp 8 năm 2023 - 2024 Chào quý thầy cô giáo và các em học sinh lớp 8, Sytu xin giới thiệu đến quý vị đề kiểm tra cuối học kì 1 môn Toán lớp 8 năm học 2023 - 2024 trường THCS Quảng Hợp, huyện Quảng Trạch, tỉnh Quảng Bình. Đề thi có hình thức 40% trắc nghiệm (16 câu) và 60% tự luận (04 câu), thời gian làm bài 90 phút (không kể thời gian giao đề). Đề thi đi kèm đáp án và hướng dẫn chấm điểm theo mã đề 01 - 02. Dưới đây là một số câu hỏi mẫu từ đề thi: 1. Chọn câu trả lời sai: Biểu đồ đoạn thẳng biểu diễn sự thay đổi của một đối tượng theo thời gian thì A. Trục đứng biểu diễn đại lượng ta đang quan tâm B. Trục ngang biểu diễn thời gian C. Trục đứng biểu diễn các tiêu chí thống kê D. Các đoạn thẳng nối nhau tạo thành một đường gấp khúc. 2. Điền từ thích hợp vào chỗ trống: Biểu đồ hình tròn thích hợp để mô tả tỉ lệ của các ... so với ... A. tổng thể, giá trị dữ liệu B. giá trị dữ liệu này, giá trị dữ liệu kia C. lớp này, lớp kia D. giá trị dữ liệu, tổng thể. 3. Biểu đồ tranh ở (Hình 3) bên thống kê số gạo bán được của cửa hàng A trong ba tháng cuối năm 2022. a) Lập bảng thống kê số gạo bán được của cửa hàng A trong ba tháng cuối năm 2022? b) Dựa vào bảng thống kê hãy vẽ biểu đồ cột biểu diễn số gạo bán được của cửa hàng A trong ba tháng cuối năm 2022. Những thông tin chi tiết cùng với hướng dẫn cụ thể sẽ được cung cấp trong file Word đính kèm.

Nguồn: sytu.vn

Đọc Sách

Đề thi học kì 1 Toán 8 năm 2020 - 2021 trường THCS Giảng Võ - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 8 đề thi học kì 1 Toán 8 năm học 2020 – 2021 trường THCS Giảng Võ, quận Ba Đình, thành phố Hà Nội, nhằm giúp các em ôn tập, thử sức để chuẩn bị cho kì thi HK1 Toán 8 sắp tới. Trích dẫn đề thi học kì 1 Toán 8 năm 2020 – 2021 trường THCS Giảng Võ – Hà Nội : + Cho tam giác ABC cân tại A có đường cao AD. Lấy điểm H thuộc đoạn thẳng AD, gọi K là điểm đối xứng với điểm H qua điểm D 1) Tứ giác BHCK là hình gì? Vì sao? 2) Đường thẳng vuông góc với đường thẳng BC tại C cắt tia BK tại điểm M. Chứng minh rằng: KM HC. 3) Qua điểm M kẻ đường thẳng song song với đường thẳng BC cắt tia CK tại N. Chứng minh rằng: Tứ giác BCMN là hình chữ nhật. Tính diện tích hình chữ nhật BCMN biết rằng BC 8cm BH 5cm. 4) Đường thẳng ND cắt đoạn thẳng HC tại điểm P. Chứng minh tỉ số HP PC không đổi khi điểm H di chuyển trên đường cao AD. + Cho x y z là các số khác 0 thỏa mãn x y z 0 và xy yz zx xyz 3. Tính giá trị biểu thức 3 3 3 yz x xz y xy z A x yz xy z xyz. + Cho hai biểu thức 2 1 1 x A x và 2 3 6 4 1 1 1 x x B x x x với x x 1 1 1) Tính giá trị của A khi x 6. 2) Rút gọn B. 3) Đặt P A B. Tìm tất cả các giá trị nguyên âm của x để P nhận giá trị là số nguyên.
Đề thi học kì 1 Toán 8 năm 2020 - 2021 trường THCS Lê Ngọc Hân - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 8 đề thi học kì 1 Toán 8 năm học 2020 – 2021 trường THCS Lê Ngọc Hân, quận Hai Bà Trưng, thành phố Hà Nội, nhằm giúp các em ôn tập, thử sức để chuẩn bị cho kì thi HK1 Toán 8 sắp tới. Trích dẫn đề thi học kì 1 Toán 8 năm 2020 – 2021 trường THCS Lê Ngọc Hân – Hà Nội : + Cho tam giác ABC đường phân giác BD. Từ D kẻ đường thẳng song song với AB cắt BC tại E. Từ D kẻ đường thẳng song song với BC cắt AB tại F. a) Chứng minh tứ giác BEDF là hình thoi. b) Vẽ M đối xứng với F qua B. Tứ giác BDEM là hình gì? Vì sao? c) Lấy N đối xứng với E qua B. Chứng minh tứ giác MNFE là hình chữ nhật. d) Lấy P là một điểm bất kì trên đường thẳng BD, Q là điểm đối xứng với P qua A. Khi P chạy trên đường thẳng BD cố định thì Q chạy trên đường thẳng cố định nào? + Cho biểu thức 2 2 3 3 2 3 6 2 2 2 4 x x x x P x x x x a) Rút gọn biểu thức P. b) Tính các giá trị của biểu thức P khi x 3 c) Tìm các giá trị nguyên của x để biểu thức P đạt giá trị nguyên. + Tìm giá trị lớn nhất của biểu thức 2 2020 2021 x C.
Đề thi học kì 1 Toán 8 năm 2020 - 2021 trường THCS Nguyễn Công Trứ - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 8 đề thi học kì 1 Toán 8 năm học 2020 – 2021 trường THCS Nguyễn Công Trứ, quận Ba Đình, thành phố Hà Nội, nhằm giúp các em ôn tập, thử sức để chuẩn bị cho kì thi HK1 Toán 8 sắp tới. Trích dẫn đề thi học kì 1 Toán 8 năm 2020 – 2021 trường THCS Nguyễn Công Trứ – Hà Nội : + Giữa hai điểm A và B là một hồ nước sâu. Biết A B lần lượt là trung điểm của MC MD (xem hình vẽ). Bạn An đi từ C đến D với vận tốc 180 m/phút hết 2 phút 30 giây. Hỏi hai điểm A và B cách nhau bao nhiêu mét? + Cho ABC cân tại A, trung tuyến AH. Lấy điểm D đối xứng với A qua H. a) Chứng minh rằng: Tứ giác ABDC là hình thoi. b) Qua A kẻ đường thẳng vuông góc với AH cắt tia DC tại E. Tứ giác ABCE là hình gì ? Vì sao ? c) Tìm điều kiện của ABC để tứ giác ABCE là hình thoi ? d) Gọi I là trung điểm của AE. Chứng minh rằng : AC BE HI đồng quy. + Cho biểu thức 2 2 x B x x. a) Tính giá trị biểu thức B khi x 3. b) Rút gọn biểu thức 2 2 1 1 A 2 4 2 2 x x x x x. c) Cho biểu thức P A B. Tìm x nguyên để biểu thức P đạt giá trị nguyên.
Đề thi học kì 1 Toán 8 năm 2020 - 2021 trường THCS Nguyễn Trãi - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 8 đề thi học kì 1 Toán 8 năm học 2020 – 2021 trường THCS Nguyễn Trãi, quận Hà Đông, thành phố Hà Nội, nhằm giúp các em ôn tập, thử sức để chuẩn bị cho kì thi HK1 Toán 8 sắp tới. Trích dẫn đề thi học kì 1 Toán 8 năm 2020 – 2021 trường THCS Nguyễn Trãi – Hà Nội : + Cho ∆ ABC vuông tại A (AB > AC). Gọi O là trung điểm BC. Lấy D đối xứng với A qua O. a) Chứng minh. Tứ giác ABDC là hình chữ nhật b) Cho AC = 6cm; AD = 10cm. Tính diện tích tứ giác ABDC c) Lấy E đối xứng với D qua BC. Từ E kẻ đường thẳng vuông góc với AB đường này cắt BC tại F. Chứng minh EFDB là hình thoi d) Chứng minh CE vuông góc với EB. + Cho biểu thức 2 2 5 1 3 2 3 6 2 x A x x x x x và 7 2 B x với 2 x a) Tính giá trị của biểu thức B khi 2 x 4 0 b) Rút gọn A c) Tìm x nguyên để biểu thức P A B có giá trị nguyên. + Cho a b c là các số dương thỏa mãn 3 3 3 a b c abc 3. Hãy tính giá trị của biểu thức 2020 2020 2020 2020 2020 2020.