Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 1 (HK1) lớp 9 môn Toán năm 2022 2023 trường THPT chuyên Hà Nội Amsterdam

Nội dung Đề thi học kì 1 (HK1) lớp 9 môn Toán năm 2022 2023 trường THPT chuyên Hà Nội Amsterdam Bản PDF - Nội dung bài viết Đề thi học kì 1 (HK1) lớp 9 môn Toán năm 2022 - 2023 trường THPT chuyên Hà Nội Amsterdam Đề thi học kì 1 (HK1) lớp 9 môn Toán năm 2022 - 2023 trường THPT chuyên Hà Nội Amsterdam Sytu xin gửi đến quý thầy cô và các em học sinh lớp 9 đề kiểm tra cuối học kỳ 1 môn Toán năm học 2022 - 2023 của trường THPT chuyên Hà Nội - Amsterdam. Đề thi được thiết kế theo hình thức tự luận với tỷ lệ 100%, thời gian làm bài 90 phút. Kỳ thi sẽ diễn ra vào ngày thứ Tư, ngày 14 tháng 12 năm 2022. Đề thi này là cơ hội để các em học sinh thể hiện kiến thức và kỹ năng trong môn Toán, từ đó đánh giá được sự tiến bộ của mình trong suốt học kỳ vừa qua. Mong rằng tất cả các em sẽ làm bài tốt và đạt được kết quả cao trong kỳ thi này.

Nguồn: sytu.vn

Đọc Sách

Đề kiểm tra học kỳ 1 Toán 9 năm học 2017 - 2018 sở GD và ĐT Bạc Liêu
Đề kiểm tra học kỳ 1 Toán 9 năm học 2017 – 2018 sở GD và ĐT Bạc Liêu gồm 1 trang với 5 bài toán tự luận, đề thi nhằm đánh giá chất lượng học tập môn Toán của học sinh lớp 9. Đề thi có lời giải chi tiết và thang điểm.
Đề khảo sát chất lượng học kỳ 1 Toán 9 năm học 2017 - 2018 sở GD và ĐT Nam Định
Đề khảo sát chất lượng học kỳ 1 Toán 9 năm học 2017 – 2018 sở GD và ĐT Nam Định thuộc chuyên mục đề thi HK1 Toán 9 gồm 8 câu hỏi trắc nghiệm và 4 bài toán tự luận, thời gian làm bài 120 phút, đề thi có đáp án và lời giải chi tiết . Trích dẫn đề thi : + Cho hàm số y = (m – 1)x + m. a) Xác định giá trị của m để đồ thị của hàm số cắt trục tung tại điểm có tung độ bằng 2. b) Xác định giá trị của m để đồ thị của hàm số cắt trục hoành tại điểm có hoành độ bằng -3. c) Vẽ đồ thị của hai hàm số ứng với giá trị của m tìm được ở các câu a) và b) trên cùng hệ trục tọa độ Oxy và tìm tọa độ giao điểm của hai đường thẳng vừa vẽ được. [ads] + Cho đường tròn (O, R) và đường thẳng d cố định không cắt đường tròn. Từ một điểm A bất kì trên đường thẳng d kẻ tiếp tuyến AB với đường tròn (B là tiếp điểm). Từ B kẻ đường thẳng vuông góc với AO tại H, trên tia đối của tia HB lấy điểm C sao cho HC = HB. a) Chứng minh C thuộc đường tròn (O, R) và AC là tiếp tuyến của đường tròn (O, R). b) Từ O kẻ đường thẳng vuông góc với đường thẳng d tại I, OI cắt BC tại K. Chứng minh OH.OA = OI.OK = R^2. c) Chứng minh khi A thay đổi trên đường thẳng d thì đường thẳng BC luôn đi qua một điểm cố định.