Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh chuyên môn Toán (chuyên) năm 2021 2022 sở GD ĐT Hà Nam

Nội dung Đề tuyển sinh chuyên môn Toán (chuyên) năm 2021 2022 sở GD ĐT Hà Nam Bản PDF Đề tuyển sinh chuyên môn Toán (chuyên) năm 2021-2022 sở GD&ĐT Hà Nam

Sytu xin gửi đến quý thầy, cô giáo và các em học sinh đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2021-2022 từ sở GD&ĐT Hà Nam. Đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm theo bảng chính thức do sở Giáo dục và Đào tạo tỉnh Hà Nam công bố.

Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2021-2022 sở GD&ĐT Hà Nam:
- Cho đường tròn O đường kính AB R=2. Gọi ∆ là tiếp tuyến của O tại A. Trên ∆ lấy điểm M sao cho MA R. Qua M vẽ tiếp tuyến MC (C thuộc đường tròn O, C khác A). Gọi H và D lần lượt là hình chiếu vuông góc của C trên AB và AM. Gọi d là đường thẳng đi qua điểm O và vuông góc với AB. Gọi N là giao điểm của d và BC.
1. Chứng minh OM // BN và MC = NO.
2. Gọi Q là giao điểm của MB và CH, K là giao điểm của AC và OM. Chứng minh đường thẳng QK đi qua trung điểm của đoạn thẳng BC.
3. Gọi F là giao điểm của QK và AM, E là giao điểm CD và OM. Chứng minh tứ giác FEQO là hình bình hành. Khi M thay đổi trên ∆, tìm giá trị lớn nhất của QF EO.
- Giải phương trình 3xy+2xz=3 2021 với x, y và z là các số nguyên.
- Cho hình vuông ABCD có độ dài cạnh bằng 1. Bên trong hình vuông người ta lấy tùy ý 2021 điểm phân biệt A1, A2, A3,... sao cho 2025 điểm A1A2A3... không có ba điểm nào thẳng hàng. Chứng minh rằng từ 2025 điểm trên luôn tồn tại 3 điểm là 3 đỉnh của hình tam giác có diện tích không quá 1.

File WORD (dành cho quý thầy, cô): Download here

Hy vọng đề tuyển sinh này sẽ giúp các em học sinh chuẩn bị tốt cho kỳ thi và đạt kết quả cao. Chúc quý thầy, cô và các em thành công!

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 - 2024 sở GDĐT Kon Tum
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (chuyên) năm học 2023 – 2024 sở Giáo dục và Đào tạo UBND tỉnh Kon Tum; kỳ thi được diễn ra vào ngày 04 tháng 06 năm 2023. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 – 2024 sở GD&ĐT Kon Tum : + Trên mặt phẳng tọa độ Oxy, cho đường thẳng d: y = (m2 + 2)x + 3 (m là tham số). Gọi A, B lần lượt là giao điểm của d với Ox, Oy. Tìm m để diện tích tam giác OAB bằng 2. + Cho phương trình: x2 – (m + 5)x + 3m + 4 = 0 (m là tham số). Tìm m để phương trình có hai nghiệm x1, x2 là độ dài hai cạnh góc vuông của một tam giác vuông có độ dài cạnh huyền bằng 5. + Cho tam giác ABC có góc C tù. Giả sử các đường phân giác trong và phân giác ngoài của góc A của tam giác ABC lần lượt cắt đường thẳng BC tại D, E sao cho AD = AE. Chứng minh rằng AB2 + AC2 = 4R2 với R là bán kính đường tròn ngoại tiếp tam giác ABC.
Đề tuyển sinh lớp 10 môn Toán năm 2023 - 2024 trường THPT chuyên Hà Tĩnh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán năm học 2023 – 2024 trường THPT chuyên Hà Tĩnh, tỉnh Hà Tĩnh; kỳ thi được diễn ra vào sáng thứ Tư ngày 07 tháng 06 năm 2023. Trích dẫn Đề tuyển sinh lớp 10 môn Toán năm 2023 – 2024 trường THPT chuyên Hà Tĩnh : + Cho đường tròn (O) đường kính AB cố định, C là một điểm chạy trên đường tròn (O) không trùng với A và B. Các tiếp tuyến của đường tròn (O) tại A và C cắt nhau tại điểm M. Đường thẳng MB cắt AC tại F và cắt đường tròn (O) tại E (E khác B). a) Gọi H là trung điểm của đoạn thẳng AC. Chứng minh tam giác OEM đồng dạng với tam giác BHM. b) Gọi K là hình chiếu vuông góc của C trên đường thẳng AB. Hai đường thẳng MB và CK cắt nhau tại I. Tỉnh tỷ số FI/AB khi tổng diện tích hai tam giác IAC và IBC lớn nhất. c) Chứng minh rằng 1/BM + 1/BF = 2/BE. + Cho các số thực a, b, c thỏa mãn a > b > c; ab + bc + ca > 0 và a + b + c = 1. Tìm giá trị nhỏ nhất của biểu thức P = 1/(a – b) + 1/(b – c) + 1/(a – c) + 5/2(ab + bc + ca). + Cho x, y, z là các số chính phương. Chứng minh rằng (x + 1)(y + 1)(z + 1) luôn viết được dưới dạng tổng của hai số chính phương.
Đề tuyển sinh vào lớp 10 môn Toán năm 2023 - 2024 sở GDĐT Bắc Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Bắc Ninh; kỳ thi được diễn ra vào thứ Ba ngày 06 tháng 06 năm 2023; đề thi có đáp án trắc nghiệm và lời giải chi tiết tự luận. Trích dẫn Đề tuyển sinh vào lớp 10 môn Toán năm 2023 – 2024 sở GD&ĐT Bắc Ninh : + Cho đường tròn tâm O, đường kính BC. Trên đường tròn đã cho lấy điểm A cố định (A khác B, C) và lấy điểm D thay đổi trên cung nhỏ AC (D khác A, C). Kẻ AH vuông góc với BC (H thuộc BC). Hai đường thẳng BD và AH cắt nhau tại I. 1. Chứng minh rằng tứ giác IHCD là tứ giác nội tiếp. 2. Chứng minh rằng AB2 = BI.BD. 3. Lấy điểm M trên đoạn thẳng BC sao cho BM = AB. Chứng minh rằng tâm đường tròn ngoại tiếp △MID luôn nằm trên một đường thẳng cố định khi D thay đổi trên cung nhỏ AC. + Một phòng họp có 165 ghế ngồi được xếp thành các hàng, mỗi hàng có số ghế bằng nhau. Trong một buổi họp có 208 người tham dự họp, do đó ban tổ chức đã kê thêm 1 hàng ghế và mỗi hàng ghế phải xếp nhiều hơn quy định là 2 ghế mới đủ chỗ ngồi. Hỏi lúc đầu, phòng họp có bao nhiêu hàng ghế và mỗi hàng ghế có bao nhiêu ghế? + Cho ba đường thẳng đôi một phân biệt (d1) : y = x + 2; (d2) : y = 2x + 1; (d3) : y = (m2 + 1)x + m (với m là tham số). Giá trị của m để ba đường thẳng trên cùng đi qua một điểm là?
Đề tuyển sinh vào lớp 10 môn Toán năm 2023 - 2024 sở GDĐT Hà Tĩnh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Hà Tĩnh; kỳ thi được diễn ra vào thứ Ba ngày 06 tháng 06 năm 2023. Trích dẫn Đề tuyển sinh vào lớp 10 môn Toán năm 2023 – 2024 sở GD&ĐT Hà Tĩnh : + Một phòng họp ban đầu có 96 ghế được xếp thành các dãy và số ghế trong mỗi dãy đều bằng nhau. Có một lần phòng họp phải cất bớt 2 dãy ghế và mỗi dãy còn lại xếp thêm 1 ghế (số ghế trong các dãy vẫn bằng nhau) để vừa đủ chỗ ngồi cho 110 đại biểu. Hỏi ban đầu trong phòng họp có bao nhiêu dãy ghế? + Cho tam giác ABC vuông tại A, đường cao AH (H thuộc BC). Biết độ dài đoạn AB = 5cm và AH = 4cm. Tính độ dài đoạn BH và diện tích tam giác ABC. + Cho tam giác ABC nhọn. Đường tròn (O) đường kính BC cắt các cạnh AB, AC lần lượt tại D và E (D khác B và E khác C). Gọi H là giao điểm của hai đường thẳng BE và CD. a) Chứng minh ADHE là tứ giác nội tiếp. b) Đường thẳng AH cắt BC tại F và cắt đường tròn (O) tại điểm P (P nằm giữa A và H). Đường thẳng DF cắt đường tròn (O) tại điểm K (K khác D). Gọi M là giao điểm của EK và BC, I là tâm đường tròn ngoại tiếp tam giác HDP. Chứng minh CE2 = BC.MC và ba điểm B, I, P thẳng hàng.