Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 2 (HK2) lớp 9 môn Toán năm 2020 2021 trường THCS Phan Huy Chú Hà Tĩnh

Nội dung Đề thi học kì 2 (HK2) lớp 9 môn Toán năm 2020 2021 trường THCS Phan Huy Chú Hà Tĩnh Bản PDF - Nội dung bài viết Đề thi học kỳ 2 Toán lớp 9 năm 2020 - 2021 trường THCS Phan Huy Chú - Hà Tĩnh Đề thi học kỳ 2 Toán lớp 9 năm 2020 - 2021 trường THCS Phan Huy Chú - Hà Tĩnh Đề thi học kỳ 2 Toán lớp 9 năm 2020 - 2021 trường THCS Phan Huy Chú - Hà Tĩnh bao gồm hai mã đề: mã đề 01 và mã đề 02. Đề thi được biên soạn dưới dạng tự luận với 05 bài toán, thời gian làm bài 90 phút. Đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trong đề thi, có một bài toán khá thú vị: "Một phòng họp có 270 chỗ ngồi và được chia thành các dãy ghế có số chỗ ngồi bằng nhau. Nếu bớt đi mỗi dãy 3 chỗ ngồi và thêm cho 3 dãy ghế thì số chỗ ngồi không thay đổi. Hỏi ban đầu phòng họp được chia thành bao nhiêu dãy ghế?". Bài toán này đòi hỏi học sinh phải sử dụng kiến thức về hệ phương trình để giải quyết. Đề thi còn có một bài toán về tam giác nội tiếp khá phức tạp: "Cho tam giác MNP nhọn nội tiếp (O). Các đường cao MD, NE, PF của tam giác cắt nhau ở H. Chứng minh các tứ giác NFHD và MFDP nội tiếp.". Đây là bài toán đòi hỏi học sinh phải có kiến thức vững về các định lý trong tam giác và tứ giác nội tiếp để giải quyết. Ngoài ra, đề thi còn có một bài toán về giải phương trình: "Cho x, y, z là các số dương thay đổi thỏa mãn điều kiện: 5*2 + 2xyz + 4y^2 + 3z^2 = 60. Tìm giá trị nhỏ nhất của biểu thức B = x + y + z.". Để giải bài toán này, học sinh cần phải áp dụng kiến thức về phương trình và tối ưu hóa hàm số. Đề thi học kỳ 2 Toán lớp 9 năm 2020 - 2021 trường THCS Phan Huy Chú - Hà Tĩnh không chỉ giúp học sinh ôn tập kiến thức mà còn giúp phát triển kỹ năng giải quyết vấn đề và tư duy logic của học sinh. Đây thực sự là một bài kiểm tra quan trọng để đánh giá sự tiến bộ của học sinh trong môn Toán.

Nguồn: sytu.vn

Đọc Sách

Đề học kì 2 Toán 9 năm 2023 - 2024 trường THCS Ninh Thắng - Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra cuối học kì 2 môn Toán 9 năm học 2023 – 2024 trường THCS Ninh Thắng, huyện Hoa Lư, tỉnh Ninh Bình; đề thi gồm 01 trang với 06 câu trắc nghiệm và 03 câu tự luận, thời gian làm bài 90 phút. Trích dẫn Đề học kì 2 Toán 9 năm 2023 – 2024 trường THCS Ninh Thắng – Ninh Bình : + Nhà trường tổ chức cho 180 học sinh khối 9 đi thăm quan di tích lịch sử Đền Vua Đinh Vua Lê. Biết xe lớn ít hơn xe nhỏ là 2 chiếc và mỗi xe lớn có nhiều hơn mỗi xe nhỏ là 15 chỗ ngồi. Tính số xe lớn. + Cho tam giác ABC (AB < AC) nội tiếp trong đường tròn (O) đường kính BC. Gọi I là một điểm thuộc đoạn OC (I khác O và C). Qua I kẻ đường vuông góc với BC cắt AC tại E. Tia BE cắt AI tại F và cắt đường tròn (O) tại D (D khác B). a) Chứng minh: tứ giác ABIE nội tiếp. b) Chứng minh: AE là tia phân giác của góc DAI. + Một chi tiết máy có hình dạng và kích thước như hình vẽ bên. Hãy tính thể tích của chi tiết máy đó. (lấy pi = 3,14, kết quả làm tròn đến hàng đơn vị).
Đề cuối kỳ 2 Toán 9 năm 2023 - 2024 phòng GDĐT Sóc Sơn - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra cuối học kỳ 2 môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Sóc Sơn, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 20 tháng 04 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề cuối kỳ 2 Toán 9 năm 2023 – 2024 phòng GD&ĐT Sóc Sơn – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Hai người đi xe đạp cùng khởi hành từ địa điểm A và đi đến địa điểm B. Do vận tốc của người đi xe đạp thứ hai lớn hơn vận tốc của người đi xe đạp thứ nhất là 4 km/h nên người thứ hai đến B sớm hơn người thứ nhất là 30 phút. Biết quãng đường AB dài 24 km, tính vận tốc của mỗi xe (Giả định rằng vận tốc của mỗi xe là không đổi trên toàn bộ quãng đường AB). + Quả bóng bàn có dạng hình cầu với đường kính là 40 mm. Tính diện tích bề mặt của quả bóng bàn đó (lấy pi = 3,14). + Cho đường tròn tâm O và dây AB. Vẽ đường kính CD vuông góc với AB tại K (D thuộc cung nhỏ AB). Trên cung nhỏ BC lấy điểm M sao cho MC < MB. Gọi F là giao điểm của DM và AB. Tia CM cắt đường thẳng AB tại E. 1) Chứng minh: tứ giác CKFM là tứ giác nội tiếp. 2) Tiếp tuyến tại M của đường tròn (O) cắt AE tại I. Chứng minh rằng I là trung điểm của EF. 3) Chứng minh: FB/EB = KF/KA.
Đề học kì 2 Toán 9 năm 2023 - 2024 trường THCS Trưng Vương - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra cuối học kì 2 môn Toán 9 năm học 2023 – 2024 trường THCS Trưng Vương, thành phố Hà Nội; đề thi có đáp án và hướng dẫn chấm điểm.
Đề học kỳ 2 Toán 9 năm 2023 - 2024 phòng GDĐT Cầu Giấy - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra cuối học kỳ 2 môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND quận Cầu Giấy, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 17 tháng 04 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học kỳ 2 Toán 9 năm 2023 – 2024 phòng GD&ĐT Cầu Giấy – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Quãng đường từ Hà Nội đến Điện Biên dài 465km. Nhân dịp kỉ niệm 70 năm chiến thắng Điện Biên Phủ, một ô tô chở khách du lịch đi từ Hà Nội đến Điện Biên. Sau khi đi được 240km, ô tô dừng lại nghỉ trưa 1 giờ. Trên quãng đường còn lại ô tô giảm vận tốc 10km/h so với lúc đầu. Biết tổng thời gian từ khi xuất phát đến khi tới Điện Biên là 9 giờ 30 phút. Tính vận tốc của ô tô lúc đầu. (Giả định rằng vận tốc trên mỗi đoạn đường trước và sau khi nghỉ là không đổi). + Một chiếc bình hình trụ cao 1 mét, đường kính đáy 40 xen-ti-mét. Hỏi bình đó đựng được tối đa bao nhiêu lít nước? (Bỏ qua bề dày của vỏ bình và lấy pi = 3,14). + Cho đường tròn (O; R). Qua điểm A nằm ngoài đường tròn, vẽ đường thẳng d không đi qua O cắt đường tròn tại hai điểm M và N (M nằm giữa A và N). Vẽ các tiếp tuyến AB, AC với đường tròn (B, C là hai tiếp điểm). Gọi H là trung điểm của MN. 1) Chứng minh 4 điểm A, B, O, H cùng thuộc một đường tròn. 2) Chứng minh AB2 = AM.AN. 3) Qua M vẽ đường thẳng song song với AC cắt BC tại P. Đường thẳng NP cắt AC tại I. Chứng minh rằng BHM = BPM và I là trung điểm của AC.