Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 2 (HK2) lớp 9 môn Toán năm 2020 2021 trường THCS Phan Huy Chú Hà Tĩnh

Nội dung Đề thi học kì 2 (HK2) lớp 9 môn Toán năm 2020 2021 trường THCS Phan Huy Chú Hà Tĩnh Bản PDF - Nội dung bài viết Đề thi học kỳ 2 Toán lớp 9 năm 2020 - 2021 trường THCS Phan Huy Chú - Hà Tĩnh Đề thi học kỳ 2 Toán lớp 9 năm 2020 - 2021 trường THCS Phan Huy Chú - Hà Tĩnh Đề thi học kỳ 2 Toán lớp 9 năm 2020 - 2021 trường THCS Phan Huy Chú - Hà Tĩnh bao gồm hai mã đề: mã đề 01 và mã đề 02. Đề thi được biên soạn dưới dạng tự luận với 05 bài toán, thời gian làm bài 90 phút. Đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trong đề thi, có một bài toán khá thú vị: "Một phòng họp có 270 chỗ ngồi và được chia thành các dãy ghế có số chỗ ngồi bằng nhau. Nếu bớt đi mỗi dãy 3 chỗ ngồi và thêm cho 3 dãy ghế thì số chỗ ngồi không thay đổi. Hỏi ban đầu phòng họp được chia thành bao nhiêu dãy ghế?". Bài toán này đòi hỏi học sinh phải sử dụng kiến thức về hệ phương trình để giải quyết. Đề thi còn có một bài toán về tam giác nội tiếp khá phức tạp: "Cho tam giác MNP nhọn nội tiếp (O). Các đường cao MD, NE, PF của tam giác cắt nhau ở H. Chứng minh các tứ giác NFHD và MFDP nội tiếp.". Đây là bài toán đòi hỏi học sinh phải có kiến thức vững về các định lý trong tam giác và tứ giác nội tiếp để giải quyết. Ngoài ra, đề thi còn có một bài toán về giải phương trình: "Cho x, y, z là các số dương thay đổi thỏa mãn điều kiện: 5*2 + 2xyz + 4y^2 + 3z^2 = 60. Tìm giá trị nhỏ nhất của biểu thức B = x + y + z.". Để giải bài toán này, học sinh cần phải áp dụng kiến thức về phương trình và tối ưu hóa hàm số. Đề thi học kỳ 2 Toán lớp 9 năm 2020 - 2021 trường THCS Phan Huy Chú - Hà Tĩnh không chỉ giúp học sinh ôn tập kiến thức mà còn giúp phát triển kỹ năng giải quyết vấn đề và tư duy logic của học sinh. Đây thực sự là một bài kiểm tra quan trọng để đánh giá sự tiến bộ của học sinh trong môn Toán.

Nguồn: sytu.vn

Đọc Sách

Đề kiểm tra học kì 2 Toán 9 năm 2021 - 2022 phòng GDĐT Cầu Giấy - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra cuối học kì 2 môn Toán 9 năm học 2021 – 2022 phòng Giáo dục và Đào tạo Ủy Ban Nhân Dân quận Cầu Giấy, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Tư ngày 27 tháng 04 năm 2022. Trích dẫn đề kiểm tra học kì 2 Toán 9 năm 2021 – 2022 phòng GD&ĐT Cầu Giấy – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Một ô tô và một xe máy cùng khởi hành từ A để đi đến B với vận tốc của mỗi xe không đổi trên toàn bộ quãng đường. Do vận tốc của ô tô lớn hơn vận tốc xe máy là 15 km/h nên ô tô đến B sớm hơn xe máy 40 phút. Biết quãng đường AB dài 60 km, tính vận tốc của mỗi xe. + Một chiếc cốc thủy tinh dạng hình trụ chứa đầy nước. Chiều cao chiếc cốc bằng 8 cm và bán kính đáy bằng 2 cm. Hỏi thể tích của lượng nước trong cốc là bao nhiêu? (Bỏ qua bề dày của thủy tinh làm cốc và lấy pi = 3,14). + Cho đường tròn (O;R) đường kính AB. Kẻ tiếp tuyến Ax của đường tròn (O) tại A. Trên tia Ax lấy điểm K sao cho AK > R. Kẻ tiếp tuyến KC tới đường tròn (O), C là tiếp điểm. 1) Chứng minh KAOC là tứ giác nội tiếp. 2) Gọi D là giao điểm của tia KC và đường thẳng AB. Chứng minh DC2 = DA.DB. 3) Gọi M là giao điểm của OK và AC. Chứng minh BC // OK và KBC = MBO.
Đề kiểm tra cuối kỳ 2 Toán 9 năm 2021 - 2022 sở GDĐT Bến Tre
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra cuối học kỳ 2 môn Toán 9 năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Bến Tre; kỳ thi được diễn ra vào thứ Ba ngày 26 tháng 04 năm 2022. Trích dẫn đề kiểm tra cuối kỳ 2 Toán 9 năm 2021 – 2022 sở GD&ĐT Bến Tre : + Một mảnh đất hình chữ nhật có diện tích 240 m2. Nếu tăng chiều rộng 3m và giảm chiều dài 4m thì diện tích mảnh đất không đổi. Tính kích thước của mảnh đất. + Tính thể tích của hình cầu có đường kính bằng 6 cm. + Trên nửa đường tròn đường kính AB, lấy hai điểm I, Q sao cho I thuộc cung AQ. Gọi C là giao điểm hai tia Al và BQ; H là giao điểm của hai dây AQ và BI. a) Chứng minh tứ giác CIHQ nội tiếp; b) Chứng minh: CI.AI = HI.BI; c) Biết AB = 2R. Tính giá trị biểu thức: M = Al.AC + BQ.BC theo R.
Đề kiểm tra cuối học kỳ 2 Toán 9 năm 2021 - 2022 sở GDĐT Bình Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra chất lượng cuối học kỳ 2 môn Toán 9 năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Bình Dương; kỳ thi được diễn ra vào thứ Tư ngày 27 tháng 04 năm 2022. Trích dẫn đề kiểm tra cuối học kỳ 2 Toán 9 năm 2021 – 2022 sở GD&ĐT Bình Dương : + Cho phương trình x2 – 2x – 8 = 0 (x là ẩn số) a) Chứng tỏ rằng phương trình trên có hai nghiệm phân biệt x1 và x2. b) Không giải phương trình, hãy tính giá trị của biểu thức: A. + Cho hàm số y = x2 có đồ thị là (P) và đường thẳng (D): y = x + 2. a) Vẽ (P) và (D) trên cùng một hệ trục tọa độ Oxy. b) Tìm tọa độ giao điểm của (P) và (D) bằng phép tính. + Người ta muốn lát gạch một nền nhà hình chữ nhật có chu vi 32m. Biết chiều rộng bằng 2/3 chiều dài. Gạch dùng để lát nền là loại gạch hình vuông có cạnh bằng 0,8m. Tính số gạch cần dùng.
Đề cuối học kỳ 2 Toán 9 năm 2021 - 2022 phòng GDĐT Long Biên - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra cuối học kỳ 2 môn Toán 9 năm học 2021 – 2022 phòng Giáo dục và Đào tạo quận Long Biên, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 20 tháng 04 năm 2022. Trích dẫn đề cuối học kỳ 2 Toán 9 năm 2021 – 2022 phòng GD&ĐT Long Biên – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc lập hệ phương trình: Tìm một số tự nhiên có hai chữ số biết rằng: Tổng hai chữ số của số đó bằng 9, nếu đổi chỗ hai chữ số cho nhau thì ta đuợc một số mới (có hai chữ số) bé hơn số ban đầu 27 đơn vị. + Cho phương trình bậc hai x2 – 2x + 2m – 3 = 0 (x là ẩn). Xác định các giá trị của m để phương trình có hai nghiệm phân biệt x1; x2 thỏa mãn điều kiện 1/x12 + 1/x22 = 10/9. + Cho tam giác ABC có ba góc nhọn(AB < AC) nội tiếp đường tròn (O;R). Vẽ các đường cao AI, BK của tam giác ABC (I thuộc BC, K thuộc AC). Gọi H là giao điểm của AI và BK và M là trung điểm của BC, kẻ HE vuông góc với AM tại E. 1) Chứng minh rằng bốn điểm A, H, E, K cùng thuộc một đường tròn. 2) Chứng minh: IB.IC = IH.IA. 3) Chứng minh: AEK = ACM và ME.MA < R2.