Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

22 chuyên đề bồi dưỡng Hình học 7

Tài liệu gồm 229 trang, tuyển tập 22 chuyên đề bồi dưỡng Hình học 7, có đáp án và lời giải chi tiết. CÁC CHUYÊN ĐỀ BỒI DƯỠNG Chương I : ĐƯỜNG THẲNG VUÔNG GÓC. ĐƯỜNG THẲNG SONG SONG. Chuyên đề 1: Hai góc đối đỉnh 3. Chuyên đề 2: Hai đường thẳng vuông góc 7. Chuyên đề 3: Dấu hiệu nhận biết hai đường thẳng song song 11. Chuyên đề 4: Tiên đề Ơ-clit. Tính chất của hai đường thẳng song song 15. Chuyên đề 5: Định lí 20. Chuyên đề 6: Chứng minh phản chứng 24. Chương II : TAM GIÁC. Chuyên đề 7: Tổng ba góc của một tam giác 29. Chuyên đề 8: Hai tam giác bằng nhau. Các trường hợp bằng nhau của hai tam giác 35. Chuyên đề 9: Tam giác cân 48. Chuyên đề 10: Định lý Pytago 60. Chuyên đề 11: Các trường hợp bằng nhau của tam giác vuông 69. Chuyên đề 12: Vẽ hình phụ để giải bài toán 73. Chuyên đề 13: Chứng minh ba điểm thẳng hàng 81. Chuyên đề 14: Tính số đo góc 88. Chương III : QUAN HỆ CÁC YẾU TỐ TRONG TAM GIÁC. CÁC ĐƯỜNG ĐỒNG QUY CỦA TAM GIÁC. Chuyên đề 15: Quan hệ giữa góc và cạnh đối diện trong một tam giác 96. Chuyên đề 16: Quan hệ giữa đường vuông góc và đường xiên, đường xiên và hình chiếu 100. Chuyên đề 17: Quan hệ giữa ba cạnh của một tam giác 104. Chuyên đề 18: Tính chất đường trung tuyến của tam giác 108. Chuyên đề 19: Tính chất tia phân giác của một góc. Tính chất ba đường phân giác của tam giác 112. Chuyên đề 20: Tính chất ba đường trung trực, ba đường cao của tam giác 116. Chuyên đề 21: Chứng minh ba đường thẳng đồng quy 122. Chuyên đề 22: Bất đẳng thức và cực trị hình học 127. HƯỚNG DẪN GIẢI – ĐÁP SỐ Chương I : ĐƯỜNG THẲNG VUÔNG GÓC. ĐƯỜNG THẲNG SONG SONG. Chuyên đề 1: Hai góc đối đỉnh 133. Chuyên đề 2: Hai đường thẳng vuông góc 138. Chuyên đề 3: Dấu hiệu nhận biết hai đường thẳng song song 142. Chuyên đề 4: Tiên đề Ơ-clit. Tính chất của hai đường thẳng song song 146. Chuyên đề 5: Định lí 150. Chuyên đề 6: Chứng minh phản chứng 154. Chương II : TAM GIÁC. Chuyên đề 8: Hai tam giác bằng nhau. Các trường hợp bằng nhau của hai tam giác 162. Chuyên đề 9: Tam giác cân 168. Chuyên đề 10: Định lý Pytago 175. Chuyên đề 11: Các trường hợp bằng nhau của tam giác vuông 180. Chuyên đề 12: Vẽ hình phụ để giải bài toán 185. Chuyên đề 13: Chứng minh ba điểm thẳng hàng 190. Chuyên đề 14: Tính số đo góc 194. Chương III : QUAN HỆ CÁC YẾU TỐ TRONG TAM GIÁC. CÁC ĐƯỜNG ĐỒNG QUY CỦA TAM GIÁC. Chuyên đề 15: Quan hệ giữa góc và cạnh đối diện trong một tam giác 203. Chuyên đề 16: Quan hệ giữa đường vuông góc và đường xiên, đường xiên và hình chiếu 209. Chuyên đề 17: Quan hệ giữa ba cạnh của một tam giác 213. Chuyên đề 18: Tính chất đường trung tuyến của tam giác 219. Chuyên đề 19: Tính chất tia phân giác của một góc. Tính chất ba đường phân giác của tam giác 226. Chuyên đề 20: Tính chất ba đường trung trực, ba đường cao của tam giác 232. Chuyên đề 21: Chứng minh ba đường thẳng đồng quy 239. Chuyên đề 22: Bất đẳng thức và cực trị hình học 245.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề quan hệ giữa góc và cạnh đối diện trong một tam giác Toán 7
Tài liệu gồm 20 trang, bao gồm tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề quan hệ giữa góc và cạnh đối diện trong một tam giác trong chương trình môn Toán 7. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1. So sánh các góc trong một tam giác. + TH1: Nếu các góc cần so sánh nằm trong cùng một tam giác thì ta áp dụng định lí 1: So sánh các cạnh đối diện với các góc đó. + TH2: Nếu các góc cần so sánh không cùng nằm trong cùng một tam giác thì ta dùng góc trung gian để so sánh. Dạng 2. So sánh các cạnh trong một tam giác. + TH1: Nếu các cạnh cần so sánh nằm trong cùng một tam giác thì ta áp dụng định lí 2: So sánh các góc đối diện với các cạnh đó. + TH2: Nếu các góc cần so sánh không cùng nằm trong cùng một tam giác thì ta dùng góc trung gian để so sánh. PHẦN III . BÀI TẬP TỰ LUYỆN.
Chuyên đề tam giác cân, đường trung trực của đoạn thẳng Toán 7
Tài liệu gồm 26 trang, bao gồm tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề tam giác cân, đường trung trực của đoạn thẳng trong chương trình môn Toán 7. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1 . Chứng minh tam giác cân, tam giác đều và sử dụng tính chất của tam giác cân, tam giác đều để giải quyết bài toán. Dựa và dấu hiệu nhận biết của tam giác cân, tam giác đều. Dựa vào tính chất của tam giác cân, tam giác đều để tính số đo góc hoặc chứng minh các góc bằng nhau, các cạnh bằng nhau. Dạng 2 . Vận dụng tính chất của đường trung trực để giải quyết bài toán. Sử dụng tính chất: Điểm nằm trên đường trung trực của một đoạn thẳng thì cách đều hai mút của đoạn thẳng đó. Dạng 3 . Chứng minh một điểm thuộc đường trung trực. Chứng minh một đường thẳng là đường trung trực của một đoạn thẳng. + Để chứng minh điểm M thuộc trung trực của đoạn thẳng AB, ta dùng nhận xét: Điểm cách đều hai mút của một đoạn thẳng thì nằm trên đường trung trực của đoạn thẳng đó. + Để chứng minh đường thẳng d là đường trung trực của đoạn thẳng AB, ta chứng minh d chứa hai điểm phân biệt cách đều A và B hoặc dùng định nghĩa đường trung trực. PHẦN III . BÀI TẬP TỰ LUYỆN.
Chuyên đề các trường hợp bằng nhau của tam giác vuông Toán 7
Tài liệu gồm 26 trang, bao gồm tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề các trường hợp bằng nhau của tam giác vuông trong chương trình môn Toán 7. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1. Tìm hoặc chứng minh hai tam giác vuông bằng nhau. + Xét hai tam giác vuông. + Kiểm tra các điều kiện bằng nhau cạnh – góc – cạnh, góc – cạnh – góc, cạnh huyền – góc nhọn, cạnh huyền – cạnh góc vuông. + Kết luận hai tam giác bằng nhau. Dạng 2. Sử dụng các trường hợp bằng nhau của tam giác vuông để chứng minh hai đoạn thẳng bằng nhau, hai góc bằng nhau. Tính độ dài đoạn thẳng, số đo góc. + Chọn hai tam giác vuông có cạnh (góc) là đoạn thẳng (góc) cần tính hoặc chứng minh bằng nhau. + Tìm thêm hai điều kiện bằng nhau, trong đó có một điều kiện về cạnh, để kết luận hai tam giác bằng nhau. + Suy ra các cạnh (góc) tương ứng bằng nhau và kết luận. PHẦN III . BÀI TẬP TỰ LUYỆN.
Chuyên đề trường hợp bằng nhau thứ hai và thứ ba của tam giác Toán 7
Tài liệu gồm 36 trang, bao gồm tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề trường hợp bằng nhau thứ hai và thứ ba của tam giác trong chương trình môn Toán 7. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1. Tìm hoặc chứng minh hai tam giác bằng nhau. + Xét hai tam giác. + Kiểm tra ba điều kiện bằng nhau cạnh – góc – cạnh, góc – cạnh – góc. + Kết luận hai tam giác bằng nhau. Dạng 2. Sử dụng trường hợp bằng nhau của tam giác để chứng minh một tính chất khác. + Chọn hai tam giác có cạnh (góc) là hai đoạn thẳng (góc) cần chứng minh bằng nhau. + Chứng minh hai tam giác ấy bằng nhau theo một trong hai trường hợp cạnh – góc – cạnh, góc – cạnh – góc rồi suy ra hai cạnh (góc) tương ứng bằng nhau. Kiểm tra ba điều kiện bằng nhau cạnh – góc – cạnh, góc – cạnh – góc. + Kết hợp với các tính chất đã học về tia phân giác, đường thẳng song song, đường trung trực, tổng ba góc trong một tam giác, … để chứng minh một tính chất khác. PHẦN III . BÀI TẬP TỰ LUYỆN.