Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 2024 sở GD ĐT Hòa Bình

Nội dung Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 2024 sở GD ĐT Hòa Bình Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn đội tuyển dự thi học sinh giỏi cấp Quốc gia môn Toán THPT năm học 2023 – 2024 sở Giáo dục và Đào tạo UBND tỉnh Hòa Bình; kỳ thi được diễn ra vào ngày 29 tháng 08 năm 2023. Trích dẫn Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Hòa Bình : + Cho dãy số (an) xác định bởi a1 = 2 và an + 1. a) Chứng minh rằng dãy số (an) là dãy số tăng. b) Với mỗi số nguyên dương n đặt bn. Chứng minh rằng dãy số (bn) có giới hạn hữu hạn và tìm giới hạn đó. + Cho tam giác ABC nhọn nội tiếp đường tròn (O). Điểm P bất kỳ nằm trong tam giác ABC sao cho AP vuông góc BC. Hạ PE vuông góc AB, PF vuông góc AC (E thuộc AB, F thuộc AC). Gọi L là giao điểm của BF và CE, Q là giao điểm của AL và BC và X là giao điểm của EF và BC. a) Chứng minh rằng đường tròn (QEF) luôn đi qua một điểm cố định. b) Kẻ đường kính AK của đường tròn (O). Chứng minh rằng KL vuông góc AX. + Cho tập hợp X = {1; 2; …; 49}. Tô màu ít nhất 24 phần tử của X với điều kiện sau: nếu a, b thuộc X (không nhất thiết phân biệt) được tô màu thì a + b cũng được tô màu, miễn là a + b thuộc X. Gọi S là tổng tất cả các phần tử không được tô màu của tập X. a) Chứng minh rằng S =< 625. b) Chỉ ra tất cả các cách tô màu sao cho S = 625.

Nguồn: sytu.vn

Đọc Sách

Đề chọn đội tuyển HSG Toán năm 2021 sở GDĐT tỉnh Đồng Nai
Ngày … tháng 09 năm 2020, sở Giáo dục và Đào tạo tỉnh Đồng Nai tổ chức kỳ thi chọn đội dự tuyển thi học sinh giỏi Quốc gia năm 2021 môn Toán. Đề chọn đội tuyển HSG Toán năm 2021 sở GD&ĐT tỉnh Đồng Nai gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 180 phút. Trích dẫn đề chọn đội tuyển HSG Toán năm 2021 sở GD&ĐT tỉnh Đồng Nai : + Cho tam giác ABC cân tại A, lấy điểm D thuộc cạnh AB khác A và B, gọi (O) là đường tròn ngoại tiếp tam giác BCD, tiếp tuyến của đường tròn (O) tại D cắt đường thẳng AC tại điểm E, vẽ tiếp tuyến EF của đường tròn (O) tại tiếp điểm F khác D. Gọi I là giao điểm của hai đường thẳng BF và CD, gọi K là giao điểm của hai đường thẳng AI và BC. Chứng minh BK = 2CK. + Một tổ gồm có 5 học sinh được phân công trực nhật 6 ngày trong tuần từ thứ hai đến thứ bảy thỏa mãn các điều kiện sau: Mỗi ngày đều có từ 1 đến nhiều nhất là 2 học sinh trực và trong cả tuần mỗi học sinh trực đúng 2 lần, mỗi lần trực 1 ngày. Tính số các cách phân công trực nhật của tổ thỏa mãn các điều kiện đã cho. + Cho dãy số (un) xác định bởi un+1 = un + 1/2021n với mọi n thuộc N*. Chứng minh rằng tồn tại số nguyên dương n sao cho un > 0.
Đề chọn đội tuyển thi HSG Quốc gia Toán 12 năm 2020 - 2021 sở GDĐT Bến Tre
Thứ Năm ngày 17 tháng 09 năm 2020, sở Giáo dục và Đào tạo tỉnh Bến Tre tổ chức kỳ thi chọn đội tuyển dự thi học sinh giỏi Quốc gia lớp 12 Trung học Phổ thông môn Toán năm học 2020 – 2021. Đề chọn đội tuyển thi HSG Quốc gia Toán 12 năm 2020 – 2021 sở GD&ĐT Bến Tre gồm 01 trang với 05 bài toán tự luận, thời gian làm bài 180 phút. Trích dẫn đề chọn đội tuyển thi HSG Quốc gia Toán 12 năm 2020 – 2021 sở GD&ĐT Bến Tre : + Cho tam giác ABC nhọn có góc BAC = 30 độ. Hai đường phân giác trong và ngoài của góc ABC lần lượt cắt đường thẳng AC tại B1 và B2; hai đường phân giác trong và ngoài của góc ACB lần lượt cắt đường thẳng AB tại C1 và C2. Giả sử đường tròn đường kính B1B2 và đường tròn đường kính C1C2 cắt nhau tại một điểm P nằm bên trong tam giác ABC. Chứng minh rằng góc BPC = 90 độ. + Cho dãy số (un) được xác định bởi: u1 = 20; u2 = 30; u_n+2 = 3.u_n+1 – u_n với n thuộc N*. Tìm tất cả các số nguyên dương n sao cho 1 + 5.u_n.u_n+1 là một số chính phương. + Cho đa thức P(x;y) không phải là đa thức hằng, thỏa mãn: P(x;y).P(z;t) = P(xz + yt;xt + yz) với mọi x, y, z, t thuộc R. Chứng minh rằng: P(x;y) chia hết cho ít nhất một trong hai đa thức Q(x;y) = x + y; H(x;y) = x – y.
Đề chọn học sinh giỏi Toán năm 2020 - 2021 trường THPT chuyên Bến Tre
Đề chọn học sinh giỏi Toán năm 2020 – 2021 trường THPT chuyên Bến Tre gồm 01 trang với 05 bài toán tự luận, thời gian làm bài 180 phút. Trích dẫn đề chọn học sinh thi HSG Toán cấp tỉnh năm 2020 – 2021 trường THPT chuyên Bến Tre : + Vé xe buýt có dạng abcdef với a, b, c, d, e, f thuộc {0; 1; 2; …; 9}. Một vé như trên thỏa mãn điều kiện a + b + c = d + e + f được gọi là vé hạnh phúc. Tính số vé hạnh phúc. + Cho hai đường tròn (O1) và (O2) cắt nhau tại A và B. Các tiếp tuyến của (O1) tại A, B cắt nhau tại O. Gọi I là điểm trên đường tròn (O1) nhưng ngoài đường tròn (O2). Các đường thẳng IA, IB cắt đường tròn (O2) lần lượt tại C, D. Gọi M là trung điểm của đoạn thẳng CD. Chứng minh rằng: a) Các tam giác IAB và IDC đồng dạng với nhau. b) I, M, O thẳng hàng. + Cho hàm f: R → R thỏa mãn điều kiện: f(f(x) + 2f(y)) = f(x) + y + f(y) với mọi x, y thuộc R (1). a) Chứng minh f là đơn ánh. b) Tìm tất cả các hàm số thỏa mãn (1).
Đề chọn đội tuyển Toán năm 2020 - 2021 trường THPT chuyên Trần Phú - Hải Phòng
Thứ Bảy ngày 12 tháng 09 năm 2020, trường THPT chuyên Trần Phú, thành phố Hải Phòng tổ chức kỳ thi chọn đội tuyển học sinh giỏi cấp trường môn Toán năm học 2020 – 2021. Đề chọn đội tuyển Toán năm 2020 – 2021 trường THPT chuyên Trần Phú – Hải Phòng gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút. Trích dẫn đề chọn đội tuyển Toán năm 2020 – 2021 trường THPT chuyên Trần Phú – Hải Phòng : + Cho tam giác ABC nội tiếp đường tròn (O), D là điểm chính giữa cung BC không chứa A, E là điểm đối xứng với B qua AD, BE cắt (O) tại F khác B. Điểm P di chuyển trên cạnh AC. BP cắt (O) tại Q khác B. Đường thẳng qua C song song với AQ cắt FD tại điểm G. a) Gọi H là giao điểm của EG và BC. Chứng minh rằng B, P, E, H cùng thuộc một đường tròn, gọi đường tròn này là (K). b) (K) cắt (O) tại L khác B. Chứng minh rằng LP luôn đi qua một điểm S cố định khi P di chuyển. c) Gọi T là trung điểm PE. Chứng minh rằng đường thẳng qua T song song với LS đi qua trung điểm của AF. + Xác định tất cả các đa thức hệ số nguyên nhận 1 + √2021 làm nghiệm. + Có bao nhiêu số nguyên dương n không vượt quá 10^2020 thỏa mãn 2^n ≡ 2021 (mod 5^2020)?