Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn học sinh giỏi Quốc gia THPT môn Toán năm học 2019 - 2020

giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi Quốc gia THPT môn Toán năm học 2019 – 2020, kỳ thi diễn ra trong các ngày 27 và 28 tháng 12 năm 2019. Đề thi chọn học sinh giỏi Quốc gia THPT môn Toán năm học 2019 – 2020 (VMO 2019 – 2020) gồm tổng cộng 07 bài toán: Giới hạn dãy số, Bất đẳng thức, Dãy số nguyên, Hình học phẳng, Hệ phương trình, Hình học phẳng, Tổ hợp. Tổng quan về đề thi, có thể nói đề ngày 1 so với “cùng kỳ năm trước” quả thật rất khác. Các câu hỏi đều có ý a để dẫn dắt gợi mở và thậm chí là cho điểm. Ý tưởng tuy không mới mẻ bằng năm trước nhưng cũng là các thử thách đáng kể với thí sinh. Hầu hết các thí sinh nếu ôn luyện cẩn thận sẽ làm tốt 4 ý a, và có thể làm thêm 1 ý b nào đó nữa. Các ý b có độ khó cũng khá tương đương nhau, tùy vào sở trường của thí sinh, nhưng nhìn chung số bạn làm được trọn vẹn cả bài hình là không nhiều. Ngày thi thứ hai có một bất ngờ lớn khi xuất hiện câu biện luận hệ phương trình cũng như ý tổ hợp a quá nhẹ nhàng. Các câu hệ a và tổ a xem như cho điểm hoàn toàn. Cả câu hình và tổ b cũng ở mức trung bình (xây dựng mô hình khá đơn giản). Tuy nhiên, câu hệ b và tổ c quả thực là thách thức lớn, đòi hỏi phải kỹ năng xử lý tình huống tốt. Nhưng nói chung, đề thi năm nay mới mẻ, đòi hỏi thí sinh vừa phải nắm chắc kiến thức, vừa phải có ít nhiều sáng tạo mới có thể làm trọn vẹn được. Trích dẫn đề thi chọn học sinh giỏi Quốc gia THPT môn Toán năm học 2019 – 2020 : + Cho số nguyên dương n > 1. Ký hiệu T là tập hợp tất cả các bộ có thứ tự (x, y, z) trong đó x, y, z là các số nguyên dương đôi một khác nhau và 1 ≤ x, y, z ≤ 2n. Một tập hợp A các bộ có thứ tự (u, v) được gọi là “liên kết” với T nếu với mỗi phần tử (x, y, z) ∈ T thì {(x, y),(x, z),( y, z)} ∩ A = ∅. a) Tính số phần tử của T. b) Chứng minh rằng tồn tại một tập hợp liên kết với T có đúng 2n(n − 1) phần tử. c) Chứng minh rằng mỗi tập hợp liên kết với T có không ít hơn 2n(n− 1) phần tử. + Cho dãy số (an) xác định bởi a1 = 5, a2 = 13 và an+1 = 5an – 6an-1 với mọi n lớn hơn hoặc bằng 2. a) Chứng minh rằng hai số hạng liên tiếp của dãy trên nguyên tố cùng nhau. b) Chứng minh rằng nếu p là ước nguyên tố của a2^k thì (p – 1) chia hết cho 2^(k + 1) với mọi số tự nhiên k. [ads] + Cho tam giác nhọn không cân ABC nội tiếp đường tròn (O) và có trực tâm H. Gọi D, E, F lần lượt là các điểm đối xứng của O qua các đường thẳng BC, CA, AB. a) Gọi Ha là điểm đối xứng của H qua BC, A’ là điểm đối xứng của A qua O và Oa là tâm của đường tròn ngoại tiếp tam giác BOC. Chứng minh rằng HaD và OaA’ cắt nhau trên (O). b) Lấy điểm X sao cho tứ giác AXDA’ là hình bình hành. Chứng minh rằng ba đường tròn ngoại tiếp các tam giác AHX, ABF và ACE có một điểm chung thứ hai khác A.

Nguồn: toanmath.com

Đọc Sách

Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 2024 sở GD ĐT Cần Thơ
Nội dung Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 2024 sở GD ĐT Cần Thơ Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn đội tuyển học sinh giỏi THPT dự thi cấp Quốc gia môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo thành phố Cần Thơ; kỳ thi được diễn ra vào ngày 22 tháng 09 năm 2023. Trích dẫn Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Cần Thơ : + Cho tam giác nhọn ABC (AB < AC) nội tiếp đường tròn (O). Hai đường cao BE, CF cắt nhau tại trực tâm H. Gọi M là trung điểm của BC. Đường thẳng AM và AH cắt đường tròn (O) lần lượt tại các điểm L, K (L, K khác A). Đường tròn đường kính AH cắt đường tròn (O) tại điểm T (T khác A). 4.1. Hai tiếp tuyến tại T và tại K của đường tròn (O) cắt nhau tại điểm J. Chứng minh rằng J thuộc đường thẳng BC và J là tâm đường tròn ngoại tiếp tam giác HKT. 4.2. Gọi P là giao điểm của EF và BC, X là giao điểm của HP và KL. Chứng minh rằng hai đường tròn ngoại tiếp tam giác HTX và tam giác TML tiếp xúc nhau. + Tìm tất cả các bộ (p, q, r, n) với p, q, r là các số nguyên tố và n là số tự nhiên sao cho p2 = q2 + rn. + Cho tập hợp S = {1; 2; 3; …; 2024}. Gọi A là tập con gồm k phần tử của tập S sao cho trong A luôn tồn tại ba phần tử x, y, z thỏa x = a + b, y = b + c, z = c + a với a, b, c là các phần tử đôi một khác nhau thuộc S. Tìm giá trị nhỏ nhất của k.
Đề HSG Toán cấp trường năm 2023 2024 trường chuyên Nguyễn Trãi Hải Dương
Nội dung Đề HSG Toán cấp trường năm 2023 2024 trường chuyên Nguyễn Trãi Hải Dương Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh đề kiểm tra chọn đội tuyển học sinh giỏi môn Toán cấp trường năm học 2023 – 2024 trường THPT chuyên Nguyễn Trãi, tỉnh Hải Dương; kỳ thi được diễn ra vào ngày 04 tháng 09 năm 2023; đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề HSG Toán cấp trường năm 2023 – 2024 trường chuyên Nguyễn Trãi – Hải Dương : + Cho tam giác ABC có đường tròn nội tiếp (I) tiếp xúc với BC, CA, AB tại D, E, F. H là hình chiếu của A trên BC. N là trung điểm của AH. Đường thẳng qua D, N cắt CA, AB lần lượt tại J, S; BJ cắt CS tại P. Các đường thẳng DA, DP lần lượt cắt (I) tại G, L. Gọi EF cắt BC tại X. a) Chứng minh rằng A, P, X thẳng hàng. b) Gọi K, T theo thứ tự là giao điểm thứ hai của DI, DN và (I). Chứng minh: K, T, X thẳng hàng. c) Chứng minh rằng bốn điểm B, C, G, L cùng nằm trên một đường tròn. + Cho số nguyên dương n và p là số nguyên tố lẻ. Giả sử n = qp + r với 0 =< r =< p − 1 và q nguyên dương. Đặt. Sn. a) Khi p = 3, chỉ ra một giá trị n nguyên dương lớn hơn 5 sao cho Sn chia hết cho p. b) Chứng minh rằng nếu p là ước của Sn thì q là số lẻ. + Tìm tất cả các số nguyên dương n sao cho có thể phân chia tập {1; 2; …; 3n} thành n tập con 3 phần tử rời nhau {a; b; c} sao cho b – a và c − b là các số khác nhau trong tập {n − 1; n; n + 1}.
Đề chọn ĐT thi HSG tỉnh môn Toán năm 2023 2024 chuyên Phan Bội Châu Nghệ An
Nội dung Đề chọn ĐT thi HSG tỉnh môn Toán năm 2023 2024 chuyên Phan Bội Châu Nghệ An Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn đội tuyển dự thi học sinh giỏi cấp tỉnh môn Toán THPT năm học 2023 – 2024 trường THPT chuyên Phan Bội Châu, tỉnh Nghệ An; đề thi hình thức tự luận, gồm 01 trang với 05 bài toán, thời gian làm bài 150 phút (không kể thời gian phát đề); đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề chọn ĐT thi HSG tỉnh môn Toán năm 2023 – 2024 chuyên Phan Bội Châu – Nghệ An : + Đặt ngẫu nhiên hết 9 viên bi được đánh số 1; 2; 3; 4; 5; 6; 7; 8; 9 vào 9 ô vuông của lưới ô vuông 3 x 3 (hình vẽ lưới ô vuông dưới đây) sao cho mỗi ô vuông chỉ được đặt đúng một viên bi. Tính xác suất để tổng các số trên mỗi hàng là số lẻ và tổng các số trên mỗi cột cũng là số lẻ. + Cho tứ diện ABCD cố định, P là điểm thay đổi trong tam giác BCD. Gọi M, N, E thứ tự là hình chiếu vuông góc của P lên các mặt phẳng (ACD), (ADB), (ABC). Xác định vị trí của P để thể tích tứ diện PMNE đặt giá trị lớn nhất. + Cho các số thực a b c thay đổi thỏa mãn các điều kiện a b c và 2 2 2 a b c 5. Tìm giá trị nhỏ nhất của biểu thức P a b b c c a ab bc ca.
Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 2024 sở GD ĐT Bến Tre
Nội dung Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 2024 sở GD ĐT Bến Tre Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn các đội tuyển dự thi học sinh giỏi cấp Quốc gia môn Toán THPT năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Bến Tre; kỳ thi được diễn ra vào ngày 14 tháng 09 năm 2023.