Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi vào 10 môn Toán (chuyên) năm 2023 - 2024 trường chuyên Lam Sơn - Thanh Hóa

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (dùng cho thí sinh thi vào lớp chuyên Toán) năm học 2023 – 2024 trường THPT chuyên Lam Sơn, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 27 tháng 05 năm 2023. Trích dẫn Đề thi vào 10 môn Toán (chuyên) năm 2023 – 2024 trường chuyên Lam Sơn – Thanh Hóa : + Xác định số nguyên dương n lớn nhất sao cho với mọi số nguyên tố p > 7 thì p6 − 1 chia hết cho n. + Cho tam giác nhọn ABC (AB < AC) có các đường cao AD, BE, CF đồng quy tại điểm H. Gọi K là trung điểm của đoạn thẳng AH. 1. Chứng minh tứ giác DEKF nội tiếp đường tròn, gọi đường tròn đó là (S). 2. Gọi P, Q lần lượt là trung điểm của các đoạn thẳng EF, BC. Chứng minh AD là tiếp tuyến của đường tròn ngoại tiếp tam giác HPQ. 3. Gọi M, N lần lượt là giao điểm của (S) với các đoạn thẳng BH, CH. Tiếp tuyến tại D của đường tròn (S) cắt MN tại T. Gọi X, Y là các giao điểm của đường tròn (S) với đường tròn ngoại tiếp tam giác BHC. Chứng minh các điểm T, X, Y thẳng hàng. + Cho tập hợp X = {1; 2; …; 120} gồm 120 số nguyên dương đầu tiên, trong đó có 60 số được viết bằng màu đỏ và 60 số còn lại được viết bằng màu xanh. Chứng minh rằng tồn tại 40 số nguyên dương liên tiếp của tập X, trong đó có 20 số được viết bằng màu đỏ và 20 số được viết bằng màu xanh.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh môn Toán (chuyên) năm 2020 2021 trường THPT chuyên Thái Bình
Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2020 2021 trường THPT chuyên Thái Bình Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (chuyên) năm 2020 2021 trường THPT chuyên Thái Bình Đề tuyển sinh môn Toán (chuyên) năm 2020 2021 trường THPT chuyên Thái Bình Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 trường THPT chuyên Thái Bình là bài thi dành cho các thí sinh muốn vào các lớp chuyên Toán và chuyên Tin học. Kỳ thi sẽ được tổ chức vào ngày ... tháng 07 năm 2020. Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 trường THPT chuyên Thái Bình bao gồm các câu hỏi sau: Cho biểu thức \( P = (x - 2)^2x + 2\sqrt{x} - 1 \). Tìm số tự nhiên x lớn nhất có hai chữ số để P có giá trị là số chính phương. Cho \( P(x) \) là một đa thức có tất cả các hệ số đều là số nguyên thoả mãn \( P(0) = 21; P(1) = 7 \). Chứng minh rằng \( P(x) \) không có nghiệm nguyên. Giả sử phương trình \( 2x^2 + 2ax + 1 - b = 0 \) có hai nghiệm nguyên (với a, b lần lượt là tham số). Chứng minh rằng \( a^2 - b^2 + 2 \) là số nguyên và không chia hết cho 3. Đây là những câu hỏi được chọn lọc kỹ càng để đánh giá năng lực và kiến thức Toán của các thí sinh. Hy vọng rằng đề thi sẽ giúp các thí sinh thể hiện khả năng và đạt kết quả tốt trong kỳ thi tuyển sinh vào trường THPT chuyên Thái Bình.
Đề tuyển sinh chuyên môn Toán năm 2020 2021 sở GD ĐT Bắc Ninh
Nội dung Đề tuyển sinh chuyên môn Toán năm 2020 2021 sở GD ĐT Bắc Ninh Bản PDF - Nội dung bài viết Đề tuyển sinh chuyên môn Toán năm 2020 - 2021 sở GD&ĐT Bắc Ninh Đề tuyển sinh chuyên môn Toán năm 2020 - 2021 sở GD&ĐT Bắc Ninh Đề tuyển sinh lớp 10 chuyên môn Toán năm 2020 - 2021 sở GD&ĐT Bắc Ninh dành cho thí sinh thi vào các lớp chuyên Toán - chuyên Tin học; kỳ thi được diễn ra vào ngày ... tháng 07 năm 2020. Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán năm 2020 - 2021 sở GD&ĐT Bắc Ninh: + Một bảng có kích thước 2n × 2n ô vuông, n là số nguyên dương. Người ta đánh dấu vào 3n ô bất kỳ của bảng. Chứng minh rằng có thể chọn ra n hàng và n cột của bảng sao cho các ô được đánh dấu đều nằm trên n hàng và n cột này. + Cho tam giác ABC vuông tại A, đường cao AH. Gọi I, J, K lần lượt là tâm đường tròn nội tiếp tam giác ABC, ABH, ACH. Chứng minh rằng đường tròn ngoại tiếp tam giác IJK và đường tròn nội tiếp tam giác ABC có bán kính bằng nhau. + Cho các số a, b, c thỏa mãn điều kiện a + b + c = 6. Chứng minh rằng có ít nhất một trong ba phương trình sau có nghiệm x2 + ax + 1 = 0; x2 + bx + 1 = 0; x2 + cx + 1 = 0.
Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Vĩnh Long
Nội dung Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Vĩnh Long Bản PDF - Nội dung bài viết Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Vĩnh Long Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Vĩnh Long Ngày 19 tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh Vĩnh Long sẽ tổ chức kỳ thi tuyển sinh vào lớp 10 khối THPT môn Toán năm học 2020 – 2021. Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Vĩnh Long bao gồm 01 trang với 07 bài toán dạng tự luận, thời gian làm bài là 120 phút (không tính thời gian phát đề). Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Vĩnh Long: Một người dự định đi xe máy từ Vĩnh Long đến Sóc Trăng cách nhau 90 km. Vì có việc gấp cần đến Sóc Trăng trước giờ dự định 27 phút, nên người ấy phải tăng vận tốc thêm 10 km/h. Hãy tính vận tốc xe máy mà người đó dự định đi. Cho tam giác ABC vuông tại A, đường cao AH. Biết BH = 4 cm, CH = 9 cm. a) Tính độ dài đường cao AH và số đo ABH (làm tròn đến độ). b) Vẽ đường trung tuyến AM của tam giác ABC (M thuộc BC), tính diện tích tam giác AHM. Cho nửa đường tròn tâm O đường kính AB. Vẽ đường thẳng d vuông góc với OA tại M (M khác O, A). Trên d lấy điểm N sao cho N nằm bên ngoài nửa đường tròn (O). Kẻ tiếp tuyến NE với nửa đường tròn (O) (E là tiếp điểm, E và A nằm cùng một phía đối với đường thẳng d). a) Chứng minh tứ giác OMEN nội tiếp được đường tròn. b) Nối NB cắt nửa đường tròn (O) tại C. Chứng minh NE^2 = NC.NB. c) Gọi H là giao điểm của AC và d, F là giao điểm của tia EH và nửa đường tròn (O). Chứng minh NEF = NOF.
Đề tuyển sinh 10 môn Toán năm 2020 2021 trường chuyên Lê Quý Đôn Khánh Hòa
Nội dung Đề tuyển sinh 10 môn Toán năm 2020 2021 trường chuyên Lê Quý Đôn Khánh Hòa Bản PDF - Nội dung bài viết Đề thi tuyển sinh môn Toán trường chuyên Lê Quý Đôn Khánh Hòa 2020 - 2021 Đề thi tuyển sinh môn Toán trường chuyên Lê Quý Đôn Khánh Hòa 2020 - 2021 Đề tuyển sinh môn Toán năm 2020 - 2021 trường chuyên Lê Quý Đôn - Khánh Hòa bao gồm một trang đề với 5 bài toán dạng tự luận. Thời gian làm bài thi là 150 phút (không tính thời gian phát đề). Kỳ thi được tổ chức vào ngày 17 tháng 07 năm 2020. Các câu hỏi trong đề tuyển sinh bao gồm: Chứng minh rằng nếu \( P(x) = ax^2 + bx + c \) với a, b, c là các số nguyên, thì 2a, b + c, c cũng là các số nguyên. Chứng minh rằng nếu x, y là các số thực dương và \( x^5 - y^3 \geq 2x \), thì \( x^3 \geq 2y \). Một ứng dụng để xác thực tài khoản yêu cầu người dùng A tạo một mật khẩu gồm 3 chữ số tự nhiên chia hết cho 6, với các chữ số lớn hơn 4. Hỏi người dùng A có thể tạo ra bao nhiêu mật khẩu theo yêu cầu đó. Đề thi này đòi hỏi sự suy luận logic và kiến thức sâu rộng về toán học, là thách thức đối với các thí sinh mong muốn gia nhập trường chuyên danh tiếng này. Chúc các em học sinh thành công trong kỳ thi sắp tới!