Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phương pháp phân tích đa thức thành nhân tử

Tài liệu gồm 74 trang, hướng dẫn các phương pháp phân tích đa thức thành nhân tử, giúp học sinh lớp 8 tham khảo khi học chương trình Toán 8 phần Đại số 8. A. MỘT SỐ PHƯƠNG PHÁP PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ I. Các phương pháp phân tích cơ bản 1. Phương pháp đặt nhân tử chung. + Tìm nhân tử chung là những đơn thức, đa thức có mặt trong tất cả các hạng tử. + Phân tích mỗi hạng tử thành tích của nhân tử chung và một nhân tử khác. + Viết nhân tử chung ra ngoài dấu ngoặc, viết các nhân tử còn lại của mỗi hạng tử vào trong dấu ngoặc (kể cả dấu của chúng). 2. Phương pháp dùng hằng đẳng thức. + Dùng các hằng đẳng thức đáng nhớ để phân tích đa thức thành nhân tử. + Cần chú ý đến việc vận dụng hằng đẳng thức. 3. Phương pháp nhóm nhiều hạng tử và phối hợp các phương pháp. + Kết hợp các hạng tử thích hợp thành từng nhóm. + Áp dụng liên tiếp các phương pháp đặt nhân tử chung hoặc dùng hằng đẳng thức. II. Một số phương pháp nâng cao Chúng ta đã biết các phương pháp cơ bản để phân tích một đa thức thành nhân tử là đặt nhân tử chung, dùng hằng đẳng thức, nhóm các hạng tử và phối hợp các phương pháp đó. Tuy nhiên có những đa thức mặc dù rất đơn giản, nếu chỉ biết dùng ba phương pháp đó thôi thì không thể phân tích thành nhân tử được. Do đó trong chuyên đề này chúng ta sẽ xét thêm một số phương pháp khác để phân tích đa thức thành nhân tử. 1. Phương pháp tách hạng tử. 1.1. Đối với đa thức bậc hai f(x) = ax2 + bx + c có nghiệm. 1.2. Đối với đa thức hai biến dạng f(x;y) = ax2 + bxy + cy2. 1.3. Đối với đa thức bậc từ 3 trở lên. 1.4. Đối với đa thức nhiều biến. 2. Phương pháp thêm và bớt cùng một hạng tử. Với một số đa thức không thể sử dụng các phương pháp như đặt nhân tử chung, sử dụng hằng đẳng thức, nhóm hạng tử cũng như phép tách hạng tử để phân tích thành nhân tử. Khi đó ta có thể sử dụng phép thêm bớt cùng một hạng tử với mục đích làm xuất hiện nhân tử chung hoặc xuất hiện các hằng đẳng thức. 2.1. Thêm và bớt cùng một số các hạng tử làm xuất hiện các hằng đẳng thức. 2.2. Thêm và bớt cùng một số hạng tử làm xuất hiện nhân tử chung. 3. Phương pháp đổi biến. Với một số đa thức có bậc cao hoặc có cấu tạo phức tạp mà khi thự hiện theo các phương pháp như trên gây ra nhiều khó khăn. Khi đó thông qua phép đổi biết ta đưa được về đa thức có bậc thấp hơn goặc đơn giản hơn để thuận tiện cho việc phân tích thành nhân tử. Sau khi phân tích thành nhân tử đối với đa thức mới ta thay trở lại biến cũ để được đa thức với biến cũ. 4. Phương pháp hệ số bất định. 5. Phương pháp xét giá trị riêng. Trong phương pháp này, trước hết ta xác định dạng các nhân tử chứa biến của đa thức, rồi gán cho các biến các giá trị cụ thể để xác định các nhân tử còn lại. B. MỘT SỐ BÀI TẬP TỰ LUYỆN C. HƯỚNG DẪN GIẢI

Nguồn: toanmath.com

Đọc Sách

Chuyên đề chia đơn thức cho đơn thức, chia đa thức cho đơn thức
Nội dung Chuyên đề chia đơn thức cho đơn thức, chia đa thức cho đơn thức Bản PDF - Nội dung bài viết Tài liệu học chia đơn thức và đa thức Tài liệu học chia đơn thức và đa thức Tài liệu này bao gồm 11 trang chuyên về chia đơn thức cho đơn thức và chia đa thức cho đơn thức. Đây là tài liệu trọng tâm cần thiết để hiểu và áp dụng các phép chia trong đại số. Trong tài liệu, bạn sẽ tìm thấy tóm tắt lý thuyết, phân dạng và hướng dẫn giải các dạng toán liên quan, từ cơ bản đến nâng cao. Để chia đơn thức cho đơn thức, trước hết bạn cần chia hệ số của đơn thức trên cho hệ số của đơn thức dưới, sau đó chia lũy thừa của từng biến trong đơn thức trên cho lũy thừa tương ứng trong đơn thức dưới. Kết quả thu được sẽ là số hạng của kết quả chia. Khi chia đa thức cho đơn thức, bạn cần chia từng hạng tử của đa thức cho đơn thức và sau đó cộng các kết quả lại với nhau. Đây là phương pháp đơn giản nhưng hiệu quả giúp giải quyết nhanh chóng các bài tập liên quan đến phép chia. Để nâng cao kỹ năng giải toán, tài liệu này còn có bài tập tự luyện đa dạng, từ dễ đến khó, với đáp án và lời giải chi tiết để bạn tự kiểm tra và tự rèn luyện. Mong rằng tài liệu này sẽ giúp bạn hiểu rõ hơn về chia đơn thức và đa thức, và giúp bạn tự tin hơn trong học tập môn Đại số.
Chuyên đề phân tích đa thức thành nhân tử
Nội dung Chuyên đề phân tích đa thức thành nhân tử Bản PDF - Nội dung bài viết Tài liệu Chuyên đề Phân tích đa thức thành nhân tử Tài liệu Chuyên đề Phân tích đa thức thành nhân tử Tài liệu này bao gồm 32 trang chứa những kiến thức cơ bản và quan trọng về cách phân tích đa thức thành nhân tử. Được tóm tắt một cách rõ ràng, tài liệu cung cấp các phương pháp phân dạng và hướng dẫn cụ thể về cách giải các dạng toán liên quan. Trong tài liệu, bạn sẽ tìm thấy các phương pháp phân tích đa thức thành nhân tử như sử dụng phương pháp đặt nhân tử chung, hằng đẳng thức, nhóm hạng tử và phối hợp nhiều phương pháp khác nhau. Ngoài ra, tài liệu cũng chứa một loạt các bài tập từ cơ bản đến nâng cao để giúp bạn ôn tập và nắm vững kiến thức. Bài tập được chọn lọc kỹ lưỡng và có đáp án cũng như lời giải chi tiết để hỗ trợ bạn trong quá trình học tập. Đặc biệt, tài liệu này được thiết kế để giúp học sinh chương trình Đại số 8 chương 1 về Phép nhân và phép chia các đa thức. Với cấu trúc sinh động và dễ hiểu, tài liệu này cung cấp một cách tiếp cận toàn diện và thú vị về việc phân tích đa thức thành nhân tử. Bên cạnh đó, các bài tập tự luyện và bài tập tổng hợp nâng cao cũng giúp học sinh rèn luyện kỹ năng và nâng cao kiến thức của mình.
Chuyên đề những hằng đẳng thức đáng nhớ
Nội dung Chuyên đề những hằng đẳng thức đáng nhớ Bản PDF - Nội dung bài viết Tài liệu Chuyên đề những hằng đẳng thức đáng nhớ Tài liệu Chuyên đề những hằng đẳng thức đáng nhớ Tài liệu này bao gồm 19 trang, tập trung vào việc giải quyet lý thuyết quan trọng, các dạng toán, và bài tập từ cơ bản đến nâng cao về chuyên đề những hằng đẳng thức đáng nhớ. Nó cung cấp đáp án và lời giải chi tiết, giúp học sinh hiểu và áp dụng kiến thức trong chương trình Đại số 8 chương 1: Phép nhân và phép chia các đa thức. A. LÝ THUYẾT Bình phương của một tổng Bình phương của một hiệu Hiệu hai bình phương Lập phương của một tổng Lập phương của một hiệu Tổng hai lập phương Hiệu hai lập phương B. CÁC DẠNG BÀI TẬP MINH HỌA CƠ BẢN - Dạng 1: Biến đổi biểu thức. Áp dụng 7 hằng đẳng thức đáng nhớ để thực hiện biến đổi biểu thức. - Dạng 2: Tính giá trị biểu thức. Cách giải đa dạng bao gồm biến đổi biểu thức và áp dụng hằng đẳng thức để tìm giá trị. - Dạng 3: Tìm giá trị lớn nhất, giá trị nhỏ nhất. Sử dụng bất đẳng thức để xác định giá trị lớn nhất và nhỏ nhất của biểu thức. C. CÁC DẠNG BÀI TẬP MINH HỌA NÂNG CAO D. PHIẾU BÀI TỰ LUYỆN
Chuyên đề nhân đơn thức với đa thức, nhân đa thức với đa thức
Nội dung Chuyên đề nhân đơn thức với đa thức, nhân đa thức với đa thức Bản PDF - Nội dung bài viết Chuyên đề nhân đơn thức với đa thức, nhân đa thức với đa thức Chuyên đề nhân đơn thức với đa thức, nhân đa thức với đa thức Tài liệu bao gồm 13 trang, tập trung vào lý thuyết quan trọng cần nắm vững, cách phân loại và hướng dẫn cách giải các dạng toán liên quan đến nhân đơn thức với đa thức, nhân đa thức với đa thức. Ngoài ra, tài liệu cũng chọn lọc các bài tập từ dễ đến khó trong chuyên đề này, kèm theo đáp án và lời giải chi tiết, giúp học sinh hiểu rõ hơn về chương trình Đại số 8 chương 1: Phép nhân và phép chia đa thức. TRỌNG TÂM CẦN ĐẠT I. Lý thuyết 1. Nhân đơn thức với đa thức: Để nhân một đơn thức với một đa thức, ta nhân đơn thức đó với từng hạng tử của đa thức và sau đó cộng các tích lại với nhau. 2. Nhân đa thức với đa thức: Để nhân một đa thức với một đa thức, ta nhân từng hạng tử của đa thức này với từng hạng tử của đa thức kia, sau đó cộng các tích lại với nhau. II. Các dạng bài tập + Dạng 1: Thực hiện phép tính. Áp dụng quy tắc nhân đơn thức với đa thức và quy tắc nhân đa thức với đa thức để giải các bài tập. + Dạng 2: Tìm giá trị của x dựa trên điều kiện cho trước. Áp dụng quy tắc nhân đơn thức với đa thức và quy tắc nhân đa thức với đa thức để tìm giá trị của x. NÂNG CAO PHÁT TRIỂN TƯ DUY Phần này tập trung vào việc giúp học sinh phát triển trí tuệ và tư duy logic thông qua việc giải các bài tập nâng cao trong chuyên đề nhân đơn thức với đa thức, nhân đa thức với đa thức. PHIẾU BÀI TẬP TỰ LUYỆN + Dạng 1: Rút gọn biểu thức. + Dạng 2: Tìm giá trị của một biểu thức chưa biết. + Dạng 3: Tính giá trị của một biểu thức đã biết. + Dạng 4: Chứng minh giá trị của một biểu thức không phụ thuộc vào biến. + Dạng 5: Bài toán nâng cao.