Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát chất lượng lớp 9 môn Toán năm 2020 2021 trường THCS Tây Sơn Hà Nội

Nội dung Đề khảo sát chất lượng lớp 9 môn Toán năm 2020 2021 trường THCS Tây Sơn Hà Nội Bản PDF - Nội dung bài viết Đề khảo sát chất lượng Toán lớp 9 trường THCS Tây Sơn Hà Nội Đề khảo sát chất lượng Toán lớp 9 trường THCS Tây Sơn Hà Nội Xin chào các thầy cô giáo và các em học sinh! Hôm nay, Sytu xin giới thiệu đến các bạn Đề khảo sát chất lượng môn Toán lớp 9 năm học 2020 - 2021 của trường THCS Tây Sơn, quận Hai Bà Trưng, thành phố Hà Nội. Đề thi bao gồm các câu hỏi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm, nhằm giúp các em rèn luyện kỹ năng và chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 môn Toán sắp tới. Một số câu hỏi trong đề khảo sát bao gồm: - Một công ty mỹ phẩm chuẩn bị ra một mẫu sản phẩm dưỡng da mang tên Ngọc Trai, với thiết kế hình khối cầu và hình khối trụ bên trong. Hãy tính thể tích của phần khối cầu còn lại nằm ngoài hình trụ đó. - Trong mặt phẳng toạ độ Oxy, chứng minh rằng đường thẳng (d) luôn cắt parabol (P) tại hai điểm A và B, sau đó tìm m để tam giác MHK có diện tích bằng 4. - Trong đường tròn (O;R) với đường kính AB = 2R, chứng minh tứ giác BCHK nội tiếp và tích AH.AK không đổi khi K chuyển động trên cung nhỏ MB. Tìm vị trí của K để tổng KM + KN + KB lớn nhất. Chúc các em học sinh của trường THCS Tây Sơn Hà Nội làm bài tốt và đạt kết quả cao trong kỳ thi khảo sát. Hy vọng rằng Đề khảo sát chất lượng Toán lớp 9 này sẽ giúp các em tự tin và thành công trên con đường học tập.

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát Toán 9 tháng 2 năm 2023 trường THCS Long Biên - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán 9 tháng 2 năm học 2022 – 2023 trường THCS Long Biên, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Tư ngày 22 tháng 02 năm 2023. Trích dẫn Đề khảo sát Toán 9 tháng 2 năm 2023 trường THCS Long Biên – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Hai đội công nhân cùng làm chung một công việc thì sau 15 ngày làm xong. Nếu đội thứ nhất làm riêng trong 3 ngày rồi dừng lại và đội thứ hai làm tiếp công việc đó trong 5 ngày thì cả hai đội hoàn thành được 25% công việc. Hỏi nếu mỗi đội làm riêng thì trong bao nhiêu ngày mới xong công việc? + Trong mặt phẳng tọa độ Oxy, cho hai đường thẳng: (d): y = x + 2 và (d’): y = -2x + 5 a) Tìm tọa độ giao điểm A của (d) và (d’) b) Gọi B, C lần lượt là giao điểm của (d) và (d’) với trục tung. Tính diện tích ABC. + Cho đường tròn (O;R) đường kính AB. Lấy điểm C thuộc đường tròn sao cho AC = R. Trên cung nhỏ BC lấy điểm D (D khác B, C); AC cắt BD tại E; kẻ EH vuông góc với AB tại H, EH cắt AD tại I. Tia DH cắt (O;R) tại điểm thứ hai là F. a) Chứng minh bốn điểm A, H, D, E cùng thuộc một đường tròn. b) Chứng minh DHE = DFC từ đó suy ra CF vuông góc AB. c) Chứng minh BCF là tam giác đều. Xác định vị trí của D trên cung nhỏ BC để chu vi tứ giác ABDC đạt giá trị lớn nhất.
Đề kiểm tra định kì Toán 9 tháng 2 năm 2023 trường THCS Ba Đình - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra định kì môn Toán 9 tháng 2 năm học 2022 – 2023 trường THCS Ba Đình, quận Ba Đình, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Ba ngày 21 tháng 02 năm 2023. Trích dẫn Đề kiểm tra định kì Toán 9 tháng 2 năm 2023 trường THCS Ba Đình – Hà Nội : + Giải toán bằng cách lập hệ phương trình: Hai đội công nhân cùng làm một công việc 6 ngày xong. Nếu đội thứ nhất làm một mình trong 3 ngày và đội thứ hai làm một mình trong 2 ngày thì được 4/9 công việc. Hỏi nếu làm một mình mỗi đội bao lâu xong công việc. + Cho hình vẽ bên. Biết số đo cung EF bằng 134 độ, AOC = 70 độ. a) Tính số đo cung AmC? b) Tính góc AEC và góc AFC? c) Tính góc EIF? d) Tính góc xCE? e) Tính góc EKC? + Cho tam giác ABC nhọn nội tiếp đường tròn (O). Tia phân giác của góc BAC cắt đường tròn tại điểm E, cắt dây BC tại I. a) Chứng minh BIA = ACE b) Chứng minh EC2 = EA.EI.
Đề khảo sát chất lượng Toán 9 năm 2022 - 2023 trường THCS Phú La - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán 9 năm học 2022 – 2023 trường THCS Phú La, quận Hà Đông, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 22 tháng 02 năm 2023. Trích dẫn Đề khảo sát chất lượng Toán 9 năm 2022 – 2023 trường THCS Phú La – Hà Nội : + Giải bài toán bằng cách lập hệ phương trình: Hai người thợ nếu cùng làm chung một công việc thì sau 12 giờ sẽ xong. Nếu người thứ nhất làm riêng trong 8 giờ rồi người thứ hai làm riêng trong 12 giờ thì cả hai người làm được 80% công việc. Hỏi nếu làm riêng thì mỗi người hoàn thành công việc đó trong bao lâu? + Cho hệ phương trình. a) Giải hệ phương trình với m = 2. b) Tìm m để đường thẳng (1) cắt đường thẳng (2) tại một điểm cách đều các trục tọa độ. + Cho đường tròn (O) có dây AB không là đường kính, gọi D là điểm thuộc tia đối của tia AB. Kẻ đường kính PQ của (O) vuông góc với dây AB tại C (P thuộc cung lớn AB). Tia DP cắt (O) tại điểm M (M khác P), các đường thẳng AB và QM cắt nhau tại K. 1) Chứng minh bốn điểm P, C, K, M cùng thuộc một đường tròn. 2) Kẻ tiếp tuyến DE của (O) (E là tiếp điểm và E thuộc nửa mặt phẳng bờ AB chứa điểm P). Chứng minh DM.DP = DE2. 3) Cho ba điểm A, B, D cố định, gọi F là giao điểm của PK và DQ. Chứng minh khi đường tròn (O) thay đổi nhưng vẫn đi qua hai điểm A và B thì DK.DC = DE2 và KP.KF không đổi.
Đề khảo sát chất lượng Toán 9 tháng 2 năm 2023 trường THCS Tây Mỗ - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán 9 tháng 2 năm học 2022 – 2023 trường THCS Tây Mỗ, quận Nam Từ Liêm, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 18 tháng 02 năm 2023. Trích dẫn Đề khảo sát chất lượng Toán 9 tháng 2 năm 2023 trường THCS Tây Mỗ – Hà Nội : + Giải bài toán bằng cách lập hệ phương trình: Theo kế hoạch hai tổ sản xuất phải may được 2200 chiếc áo trong một ngày. Do tổ 1 làm vượt mức kế hoạch 12%, tổ hai làm vượt mức kế hoạch 10% nên cả hai tổ đã may vượt mức được 240 chiếc áo. Hỏi theo kế hoạch, mỗi tổ phải may được bao nhiêu áo trong một ngày. + Tính chiều cao của một cột cờ, biết bóng của cột cờ trên mặt đất dài 11,6m và góc tạo bởi tia nắng mặt trời với mặt đất là 36°50′ (làm tròn đến số thập phân thứ nhất). + Cho đường tròn (O) và điểm C nằm ngoài (O). Từ C kẻ hai tiếp tuyến CA, CB với (O) (A, B là tiếp điểm). a) Chứng minh bốn điểm O; A; B; C cùng thuộc một đường tròn. b) Qua C kẻ cát tuyến CDE đến (O) (D nằm giữa C và E). Chứng minh: AC2 = CD.CE. c) Gọi K là trung điểm của DE, đường thẳng BK cắt đường tròn (O) tại Q. 1. Chứng minh rằng AQ // DE. 2. Chứng minh khi cát tuyến CDE thay đổi thì trọng tâm G của tam giác ADE luôn chạy trên một đường tròn cố định.