Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HSG cấp huyện Toán 7 năm 2022 - 2023 phòng GDĐT Lục Ngạn - Bắc Giang

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi văn hóa cấp huyện môn Toán 7 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Lục Ngạn, tỉnh Bắc Giang; kỳ thi được diễn ra vào thứ Ba ngày 07 tháng 03 năm 2023. Trích dẫn đề HSG cấp huyện Toán 7 năm 2022 – 2023 phòng GD&ĐT Lục Ngạn – Bắc Giang : + Địa y là một dạng kết hợp giữa nấm (mycobiont) và một loại sinh vật có thể quang hợp (photobiont hay phycobiont) trong một mối quan hệ cộng sinh. Khi trái đất nóng dần lên làm cho băng trên các dòng sông bị đóng băng tan dần. Mười hai năm sau khi băng tan, Địa y bắt đầu phát triển và nếu mỗi nhóm Địa y phát triển trên một khoảng đất hình tròn thì mối quan hệ giữa đường kính d (tính bằng mi-li-mét) của hình tròn đó và tuổi r của Địa y có thể biểu diễn tương đối theo công thức: d = 7t − 12 (với t ≥ 12). Năm 2022, người ta đã đo được đường kính của một nhóm Địa y cạnh một dòng sông là 42mm. Với kết quả đo trên, em hãy tính xem băng trên dòng sông đó đã tan vào năm nào? + Cho tam giác MNP vuông cân ở M, A là trung điểm của NP. Điểm B nằm giữa hai điểm A và P. Kẻ NH và PK vuông góc với MB lần lượt tại H và K. a) Chứng minh: HMN = KPM. b) Chứng minh MAP là tam giác cân và AH vuông góc AK. + Một bể cá hình hộp chữ nhật có chiều dài 60cm, chiều rộng 25cm và chiều cao 50 cm. Để nuôi cá, người ta đổ 45 lít nước và một tiểu cảnh bằng đá vào bể. Biết khi đó chiều cao mực nước trong bề là 34 cm. Hãy tính thể tích của tiểu cảnh đó.

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi huyện Toán 7 năm 2014 - 2015 phòng GDĐT Nho Quan - Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề học sinh giỏi huyện Toán 7 năm 2014 – 2015 phòng GD&ĐT Nho Quan – Ninh Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi huyện Toán 7 năm 2014 – 2015 phòng GD&ĐT Nho Quan – Ninh Bình : + Tìm các số a, b, c không âm thỏa mãn đồng thời ba điều kiện: a + 3c = 2014; a + 2b = 2015; tổng (a + b + c) đạt giá trị lớn nhất. + Trên bảng viết 99 số: 1, 2, 3, 4 … 99. Cứ mỗi lần người ta xóa đi hai số bất kì rồi lại viết giá trị của tổng hai số vừa xóa vào bảng. Cuối cùng trên bảng chỉ còn lại một số, giả sử đó là số k. Hãy tìm k và chứng tỏ k không phải là số chính phương. + Cho m, n, p là các số nguyên dương thỏa mãn: m2 = n2 + p2. Chứng minh rằng: tích m.n.p chia hết cho 15.
Đề học sinh giỏi huyện Toán 7 năm 2013 - 2014 phòng GDĐT Nho Quan - Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề học sinh giỏi huyện Toán 7 năm 2013 – 2014 phòng GD&ĐT Nho Quan – Ninh Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi huyện Toán 7 năm 2013 – 2014 phòng GD&ĐT Nho Quan – Ninh Bình : + Cho n là số tự nhiên có hai chữ số. Tìm n biết n 4 và 2n đều là các số chính phương. + Cho xAy = 600 có tia phân giác Az. Từ điểm B trên Ax kẻ BH vuông góc với Ay tại H, kẻ BK vuông góc với Az và Bt song song với Ay, Bt cắt Az tại C. Từ C kẻ CM vuông góc với Ay tại M. 1) Chứng minh K là trung điểm của AC. 2) Chứng minh KMC là tam giác đều. 3) Cho BK = 2cm. Tính các cạnh của AKM. + Đa thức f(x) = ax2 + bx + c có a, b, c là các số nguyên và a 0. Biết với mọi giá trị nguyên của x thì f(x) luôn chia hết cho 23. Chứng minh rằng các số a, b, c đều chia hết cho 23.
Đề học sinh giỏi huyện Toán 7 năm 2009 - 2010 phòng GDĐT Phú Thiện - Gia Lai
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề học sinh giỏi huyện Toán 7 năm 2009 – 2010 phòng GD&ĐT Phú Thiện – Gia Lai; đề thi có đáp số + lời giải + thang điểm. Trích dẫn đề học sinh giỏi huyện Toán 7 năm 2009 – 2010 phòng GD&ĐT Phú Thiện – Gia Lai : + Cho tam giác ABC vuông tại A; K là trung điểm của BC. Trên tia đối của tia KA lấy D sao cho KD = KA. a. Chứng minh: CD // AB. b. Gọi H là trung điểm của AC; BH cắt AD tại M; DH cắt BC tại N. Chứng minh rằng: ABH = CDH. c. Chứng minh: HMN cân. + Chứng minh rằng số có dạng abcabc luôn chia hết cho 11. + Cho tỉ lệ thức d c b a. Chứng minh rằng: (a + 2c)(b + d) = (a + c)(b + 2d).