Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phân dạng và bài tập phương pháp tọa độ trong không gian

Tài liệu gồm 146 trang, được biên soạn bởi thầy giáo Hoàng Tuyên và thầy giáo Lê Minh Tâm, phân dạng toán và tuyển chọn bài tập trắc nghiệm chuyên đề phương pháp tọa độ trong không gian, có đáp án và lời giải chi tiết; giúp học sinh khối 12 rèn luyện khi học chương trình Hình học 12 chương 3 và ôn thi tốt nghiệp THPT môn Toán. CHUYÊN ĐỀ 1 . HỆ TRỤC TỌA ĐỘ OXYZ. + Dạng toán 1. Tìm tọa độ điểm, tọa độ véctơ thỏa điều kiện. + Dạng toán 2. Tính độ dài đoạn thẳng, véctơ. + Dạng toán 3. Xét sự cùng phương, sự đồng phẳng. + Dạng toán 4. Bài toán về tích vô hướng, góc và ứng dụng. + Dạng toán 5. Bài toán về tích có hướng và ứng dụng. CHUYÊN ĐỀ 2 . PHƯƠNG TRÌNH MẶT CẦU. + Dạng toán 1. Tìm tâm – bán kính – điều kiện xác định mặt cầu. + Dạng toán 2. Phương trình mặt cầu biết tâm, dễ tính bán kính. + Dạng toán 3. Phương trình mặt cầu biết hai đầu mút của đường kính. + Dạng toán 4. Phương trình mặt cầu ngoại tiếp tứ diện. + Dạng toán 5. Phương trình mặt cầu qua nhiều điểm và thỏa điều kiện. + Dạng toán 6. Phương trình mặt cầu biết tâm, tiếp xúc với mặt phẳng. + Dạng toán 7. Phương trình mặt cầu biết tâm và đường tròn trên nó. + Dạng toán 8. Phương trình mặt cầu biết tâm và điều kiện của dây cung. + Dạng toán 9. Phương trình mặt cầu biết tâm thuộc d, thỏa điều kiện. CHUYÊN ĐỀ 3 . PHƯƠNG TRÌNH MẶT PHẲNG. + Dạng toán 1. Tìm véctơ pháp tuyến, các vấn đề về lý thuyết. + Dạng toán 2. Phương trình mặt phẳng trung trực của đoạn thẳng. + Dạng toán 3. Phương trình mặt phẳng qua một điểm, dễ tìm véctơ pháp tuyến (không dùng tích có hướng). + Dạng toán 4. Phương trình mặt phẳng qua một điểm, véctơ pháp tuyến tìm bằng tích có hướng. + Dạng toán 5. Phương trình mặt phẳng qua một điểm, tiếp xúc với mặt cầu. + Dạng toán 6. Phương trình mặt phẳng qua hai điểm, véctơ pháp tuyến tìm bằng tích có hướng. + Dạng toán 7. Phương trình mặt phẳng qua ba điểm không thẳng hàng. + Dạng toán 8. Phương trình mặt phẳng vuông góc với đường thẳng. + Dạng toán 9. Phương trình mặt phẳng qua một điểm và chứa đường thẳng. + Dạng toán 10. Phương trình mặt phẳng chứa một đường thẳng, thỏa điều kiện với đường thẳng khác. + Dạng toán 11. Phương trình mặt phẳng liên quan đường thẳng và mặt cầu (VDC). + Dạng toán 12. Phương trình mặt phẳng song song với mặt phẳng, thỏa điều kiện. CHUYÊN ĐỀ 4 . PHƯƠNG TRÌNH ĐƯỜNG THẲNG. + Dạng toán 1. Tìm véctơ chỉ phương, các vấn đề về lý thuyết. + Dạng toán 2. Phương trình đường thẳng qua một điểm, dễ tìm véctơ chỉ phương (không dùng tích có hướng). + Dạng toán 3. Phương trình đường thẳng qua một điểm, véctơ chỉ phương tìm bằng tích có hướng. + Dạng toán 4. Phương trình đường thẳng qua một điểm, cắt đường này, có liên hệ với đường kia. + Dạng toán 5. Phương trình đường thẳng qua một điểm, cắt d, có liên hệ với mặt phẳng (P). + Dạng toán 6. Phương trình đường thẳng qua một điểm, cắt d1 lẫn d2 hoặc vuông góc d2. + Dạng toán 7. Phương trình đường thẳng nằm trong (P), vừa cắt vừa vuông góc với d. + Dạng toán 8. Giao tuyến của hai mặt phẳng. + Dạng toán 9. Đường vuông góc chung của hai đường thẳng chéo nhau. + Dạng toán 10. Hình chiếu vuông góc của d lên (P).

Nguồn: toanmath.com

Đọc Sách

Ứng dụng phương pháp tọa độ để giải bài toán hình học không gian - Cao Văn Tuấn
Các em học sinh nên nhớ rằng “Không có phương pháp giải nào là vạn năng”, do đó các em phải không ngừng luyện tập để tạo ra sợi dây liên kết giữa các phần kiến thức của mình, khi đó các em mới có thể vận dụng linh hoạt các phương pháp sao cho bài giải của mình khoa học nhất, hay nhất. Đối với một số loại hình chóp, hình lăng trụ trong một số bài toán ta có thể sử dụng việc đặt một hệ trục tọa độ thích hợp, để chuyển từ việc giải hình học không gian tổng hợp thuần túy (mà việc này có thể gặp nhiều khó khăn trong dựng hình, tính toán với các em học sinh) sang việc tính toán dựa vào tọa độ. Cách giải bài toán như vậy gọi là phương pháp tọa độ hóa. Đối với phương pháp tọa độ hóa, việc tính toán có thể sẽ dài dòng và phức tạp hơn phương pháp hình học không gian thuần túy, tuy nhiên cách giải này thực sự rất hữu ích cho nhiều bạn học sinh mà việc nắm vững những phương pháp trong cách giải hình học không gian còn yếu hoặc những bài toán hình không gian về khoảng cách khó; về xác định GTLN, GTNN; các bài toán về quỹ tích điểm … Để có thể làn tốt được các bài toán giải bằng phương pháp tọa độ hóa thì các em học sinh phải nắm chắc các kiến thức (cụ thể là các công thức tính) của phần “Phương pháp tọa độ trong không gian” và những kiến thức cơ bản nhất của hình học không gian. [ads] Sau đây thầy sẽ trình bày cụ thể phương pháp Ứng dụng phương pháp tọa độ để giải toán hình học không gian: + Bước 1: Chọn hệ trục tọa độ Oxyz trong không gian: Vì Ox, Oy, Oz vuông góc với nhau từng đôi một nên nếu hình vẽ bài toán cho có chứa các cạnh vuông góc thì ta ưu tiên chọn các cạnh đó làm trục tọa độ. + Bước 2: Suy ra tọa độ của các đỉnh, điểm trên hệ trục tọa độ vừa ghép. + Bước 3: Sử dụng các kiến thức về tọa độ không gian để giải quyết bài toán. Đối với các công thức tính về vector, ta có thể sử dụng máy tính Casio để tăng tốc độ tính toán. Các em lưu ý rằng chúng ta có thể tọa độ hóa một khối đa diện bất kỳ. Chỉ cần chúng ta xác định được đường cao của khối đa diện đó và thông thường trên lý thuyết ta đều đặt gốc tọa độ là chân đường cao của khối đa diện; trục cao (trục Oz) là đường cao, sau đó ta dựng hai tia còn lại. Nhưng trong thực hành giải toán chúng ta căn cứ tùy bài toán để đặt hệ trục miễn sao chúng ta có thể tìm các tọa độ các đỉnh liên quan đến hình khối cần tính có thể tìm được một cách dễ dàng hoặc không quá phức tạp.
Giải bài toán hình học không gian bằng phương pháp tọa độ - Trần Đình Cư
Tài liệu gồm 37 trang với 46 bài toán thuộc chuyên đề phương pháp tọa độ trong không gian được phân tích và giải chi tiết, tài liệu do thầy Trần Đình Cư biên soạn. Trích dẫn tài liệu : + Cho hình lăng trụ đứng ABC.A’B’C’, đáy ABC là tam giác vuông tại A, AB = a, AC = 2a, AA’ = b. Gọi M, N lần lượt là trung điểm của BB’ và AB. a. Tính theo a và b thể tích của tứ diện A’CMN b. Tính tỉ số b/a để B’C ⊥ AC’ [ads] + Cho khối lập phương ABCD.A’B’C’D’ có cạnh bằng 1. Gọi M, N, P lần lượt là trung điểm của các cạnh A’B’, BC, DD’. a. Tính góc giữa hai đường thẳng AC’ và A’B. b. Chứng minh AC’ ⊥ (MNP) và tính thể tích của khối tứ diện AMNP. + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, mặt bên SAD là tam giác đều và nằm trong mặt phẳng vuông góc với (ABCD). Gọi M, N, P lần lượt là trung điểm của SB, BC, CD. Chứng minh rằng AM ⊥ BP và tính thể tích của khối tứ diện CMNP.
Ứng dụng phương pháp tọa độ để giải các bài toán hình học không gian
Tài liệu cung cấp cách gắn hệ trục tọa độ Oxyz vào các khối đa diện thường gặp. Các ví dụ minh họa điển hình kèm theo giải thích chi tiết sẽ giúp bạn đọc nắm kĩ hơn về kĩ thuật tọa độ hóa. Bước 1 . Chọn hệ trục tọa độ Oxyz trong không gian Ta có: Ox, Oy, Oz vuông góc với nhau từng đôi một. Do đó, nếu hình vẽ bài toán cho có chứa các cạnh vuông góc thì ta ưu tiên chọn các cạnh đó làm trục tọa độ. Cụ thể: Với hình lập phương hoặc hình hộp chữ nhật ABCD.A’B’C’D’ Với hình lập phương Chọn hệ trục tọa độ sao cho: A(0; 0; 0); B(a; 0; 0); C(a; a; 0); D(0; a; 0) A’(0; 0; a); B’(a; 0; a); C’(a; a; 0); D’(0; a; a) Với hình hộp chữ nhật Chọn hệ trục tọa độ sao cho: A(0; 0; 0); B(a; 0; 0); C(a; b; 0); D(0; b; 0) A’(0; 0; c); B’(a; 0; c); C’(a; b; c); D’(0; b; c) Với hình hộp đáy là hình thoi ABCD.A’B’C’D’ Chọn hệ trục tọa độ sao cho: + Gốc tọa độ trùng với giao điểm O của hai đường chéo của hình thoi ABCD + Trục Oz đi qua 2 tâm của 2 đáy [ads] Với hình chóp tứ giác đều S.ABCD Với hình chóp tam giác đều S.ABC Với hình chóp S.ABCD có ABCD là hình chữ nhật và SA ⊥ (ABCD) Với hình chóp S.ABC có ABCD là hình thoi và SA ⊥ (ABCD) Với hình chóp S.ABC có SA ⊥ (ABC) và Δ ABC vuông tại A Với hình chóp S.ABC có SA ⊥ (ABC) và Δ ABC vuông tại B Với hình chóp S.ABC có (SAB) ⊥ (ABC), Δ SAB cân tại S và Δ ABC vuông tại C Với hình chóp S.ABC có (SAB) ⊥ (ABC), Δ SAB cân tại S và Δ ABC vuông tại A Bước 2 . Sử dụng các kiến thức về tọa độ để giải quyết bài toán Các dạng câu hỏi thường gặp: Khoảng cách, góc, diện tích thiết diện, thể tích khối đa diện Một số kiến thức Hình học bổ sung Bài tập vận dụng
Phương pháp tọa độ hóa để giải bài toán hình học không gian - Nguyễn Hồng Điệp
Tài liệu gồm 16 trang hướng dẫn phương pháp tọa độ hóa để giải các bài toán hình học không gian, tài liệu do thầy Nguyễn Hồng Điệp biên soạn. Nội dung tài liệu : 1. Các công thức 2. Xác định tọa độ điểm 3. Cách chọn hệ trục tọa độ – chọn véctơ + Chọn véctơ Đối với dạng bài tập này khi tìm véctơ chỉ phương, véctơ pháp tuyến của đường thẳng và mặt phẳng ta sẽ gặp trường hợp véctơ chứa tham số a là độ dài cạnh. Khi đó, để tiện cho việc tính toán ta chọn lại véctơ chỉ phương, véctơ pháp tuyến mất tham số a. [ads] + Chọn hệ trục tọa độ Phần quan trọng nhất của phương pháp này là cách chọn hệ trục tọa độ. Không có phương pháp tổng quát, có nhiều hệ trục tọa độ có thể được chọn, chúng ta chọn sao cho việc tìm tọa độ các điểm có nhiều số 0 càng tốt. • Hệ trục tọa độ nằm trên 3 đường thẳng đôi 1 vuông góc nhau. • Gốc tọa độ thường là chân đường cao của hình chóp, hình lăng trụ trùng với đỉnh của hình vuông, hình chữ nhật, tam giác vuông hoặc có thể là trung điểm của cạnh nào đó. 4. Các ví dụ