Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát chất lượng Toán 12 THPT năm 2021 sở GDĐT Hải Phòng

Nhằm hướng đến kỳ thi tốt nghiệp Trung học Phổ thông năm 2021, tối thứ Bảy ngày 29 tháng 05 năm 2021, sở Giáo dục và Đào tạo UBND thành phố Hải Phòng tổ chức kỳ thi khảo sát chất lượng học sinh khối 12 THPT môn Toán năm học 2020 – 2021; kỳ thi được diễn ra theo hình thức thi trực tuyến (thi online) để đảm bảo an toàn trước sự ảnh hưởng của dịch bệnh Covid-19. Đề khảo sát chất lượng Toán 12 THPT năm 2021 sở GD&ĐT Hải Phòng có cấu trúc bám sát đề minh họa tốt nghiệp THPT 2021 môn Toán của Bộ Giáo dục và Đào tạo, đề thi có đáp án (đáp án được gạch chân và đánh dấu màu đỏ). Trích dẫn đề khảo sát chất lượng Toán 12 THPT năm 2021 sở GD&ĐT Hải Phòng : + Ông An dự định làm một vườn hoa dạng elip được chia ra làm bốn phần bởi hai đường parabol có chung đỉnh, đối xứng với nhau qua trục của elip như hình vẽ dưới. Biết độ dài trục lớn, trục nhỏ của elip lần lượt là 16m và 8m, 1 2 F F là hai tiêu điểm của elip. Phần A, B dùng để trồng hoa, phần C, D dùng để trồng cỏ. Kinh phí để trồng mỗi mét vuông hoa và cỏ lần lượt là 200.000 đồng và 100.000 đồng. Tính tổng tiền để hoàn thành vườn hoa trên (làm tròn đến hàng nghìn). + Một bồn hình trụ đang chứa đầy nước, được đặt nằm ngang, chiều dài bồn là 4m, bán kính đáy 1,2m. Người ta rút nước trong bồn một lượng tương ứng như hình vẽ. Thể tích của lượng nước còn lại trong bồn xấp xỉ bằng? + Cho hình hộp ABCD A B C D có đáy ABCD là hình thoi cạnh a, BD a 3. Hình chiếu vuông góc của B trên mặt phẳng A B C D là giao điểm của A C và B D (tham khảo hình vẽ). Góc giữa hai mặt phẳng A B C D và ADD A bằng 0 60. Thể tích khối hộp ABCD A B C D bằng?

Nguồn: toanmath.com

Đọc Sách

Đề thi thử tốt nghiệp THPT 2024 môn Toán lần 1 sở GDĐT Bình Phước
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp Trung học Phổ thông năm 2024 môn Toán lần 1 sở Giáo dục và Đào tạo UBND tỉnh Bình Phước; đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề thi thử tốt nghiệp THPT 2024 môn Toán lần 1 sở GD&ĐT Bình Phước : + Cho hàm số 4 2 y f x ax bx c có đồ thị C biết rằng C đi qua điểm A 10 tiếp tuyến d tại A của C cắt C tại hai điểm có hoành độ lần lượt là 0 và 2. Khi diện tích hình phẳng giới hạn bởi d đồ thị C và hai đường thẳng x 0 x 2 có diện tích bằng 285 (phần gạch sọc) thì 1 f xd bằng? + Cho hàm số 4 2 f x ax bx a a b 1 mà đồ thị hàm số f x và đồ thị hàm số f x có một điểm chung duy nhất và nằm trên Oy (hình vẽ bên dưới), trong đó 1 x là nghiệm của f x và 2 x là nghiệm của f x 1 2 x 0 0. Biết 1 2 x 3 tính diện tích hình phẳng giới hạn bởi các đồ thị hàm số f x và trục Ox. + Trong không gian Oxyz cho A 002 B 345. Xét điểm M thay đổi thỏa mãn các điều kiện khoảng cách từ A đến đường thẳng OM bằng 6 5 và độ dài đoạn thẳng OM 5. Gọi M m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của độ dài đoạn thẳng MB. Khi đó M m bằng?
Đề thi thử TN THPT 2024 lần 1 môn Toán cụm chuyên môn số 3 - Đắk Lắk
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm học 2023 – 2024 lần 1 môn Toán cụm chuyên môn số 3 sở Giáo dục và Đào tạo tỉnh Đắk Lắk; đề thi có đáp án trắc nghiệm mã đề 001 – 002 và lời giải chi tiết các câu vận dụng cao. Trích dẫn Đề thi thử TN THPT 2024 lần 1 môn Toán cụm chuyên môn số 3 – Đắk Lắk : + Cho hình trụ có 2 đáy là hình tròn tâm O và O thể tích 3 V a. Mặt phẳng (P) đi qua tâm O và tạo với OO một góc 30, cắt hai đường tròn tâm O và O tại bốn điểm là bốn đỉnh của một hình thang có đáy lớn gấp đôi đáy nhỏ và diện tích bằng 2 3a. Khoảng cách từ tâm O đến (P) là? + Số lượng của loại vi khuẩn A trong một phòng thí nghiệm được tính theo công thức 2t s trong đó 0 s là số lượng vi khuẩn A lúc ban đầu, s t là số lượng vi khuẩn A có sau t phút. Biết sau 3 phút thì số lượng vi khuẩn A là 625 nghìn con. Hỏi sau bao lâu kể từ lúc ban đầu, số lượng vi khuẩn A là 10 triệu con? + Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(0;-2;0) và B(3;4;5). Gọi (P) là mặt phẳng chứa giao tuyến của hai mặt cầu: S x y z. Xét hai điểm M N là hai điểm bất kì thuộc (P) sao cho MN = 1. Giá trị nhỏ nhất của AM BN bằng?
Đề thi thử TN THPT 2024 lần 2 môn Toán trường THPT Ninh Giang - Hải Dương
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm học 2023 – 2024 lần 2 môn Toán trường THPT Ninh Giang, tỉnh Hải Dương; đề thi có đáp án trắc nghiệm MÃ ĐỀ A-132 MÃ ĐỀ B-153 MÃ ĐỀ C-209 MÃ ĐỀ D-281. Trích dẫn Đề thi thử TN THPT 2024 lần 2 môn Toán trường THPT Ninh Giang – Hải Dương : + Cho hai nửa đường tròn như hình vẽ, trong đó đường kính của đường tròn lớn gấp đôi đường kính của đường tròn nhỏ. Biết rằng nửa hình tròn đường kính AB có diện tích là 8 và 30o BAC. Tính thể tích vật thể tròn xoay được tạo thành khi quay hình phẳng H (phần tô đậm) xung quanh đường thẳng AB. + Một hộp dựng 10 viên bi xanh khác nhau và 5 viên bi vàng khác nhau. Có bao nhiêu cách lấy ngẫu nhiên 4 viên bi trong đó có ít nhất 2 viên bi màu xanh. + Hình hộp chữ nhật ABCD A B C D có cạnh AD a BD a góc giữa đường chéo AB của mặt bên ABB A hợp với mặt phẳng đáy một góc 60o. Tính diện tích mặt cầu ngoại tiếp hình hộp chữ nhật ABCD A B C D.
Đề thi thử Toán tốt nghiệp THPT 2024 lần 2 trường Việt Anh 2 - Bình Dương
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử môn Toán tốt nghiệp THPT Quốc gia năm học 2023 – 2024 lần 2 trường Trung – Tiểu học Việt Anh 2, tỉnh Bình Dương; kỳ thi được diễn ra vào ngày 06 tháng 04 năm 2024. Trích dẫn Đề thi thử Toán tốt nghiệp THPT 2024 lần 2 trường Việt Anh 2 – Bình Dương : + Cho hàm số 2 y 2x 6mx 6(m 12)x 1 m là tham số. Tổng các giá trị của tham số m để đồ thị hàm số có hai điểm cực trị mà hoành độ của chúng là độ dài hai cạnh góc vuông của một tam giác vuông có độ dài cạnh huyền bằng 4 3 là? + Một vật trang trí có dạng một khối tròn xoay được tạo thành khi quay miền (R) (phần gạch chéo trong hình vẽ bên) quanh trục AB. Miền (R) được giới hạn bởi các cạnh AB, AD của hình vuông ABCD và các cung phần tư của các đường tròn bán kính bằng 1 cm với tâm lần lượt là trung điểm của các cạnh BC AD. Tính thể tích của vật trang trí đó, làm tròn kết quả đến hàng phần mười? + Để chế tạo một chi tiết máy, từ một khối thép hình trụ có bán kính 10 cm và chiều cao 30 cm, người ta khoét bỏ một rãnh xung quanh rộng 1 cm và sâu 1 cm (tham khảo hình vẽ bên). Tính thể tích của chi tiết máy đó, làm tròn kết quả đến hàng phần nghìn.