Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát HSG lớp 9 môn Toán tháng 10 năm 2022 phòng GD ĐT Chí Linh Hải Dương

Nội dung Đề khảo sát HSG lớp 9 môn Toán tháng 10 năm 2022 phòng GD ĐT Chí Linh Hải Dương Bản PDF - Nội dung bài viết Đề khảo sát HSG lớp 9 môn Toán tháng 10 năm 2022 phòng GD ĐT Chí Linh Hải Dương Đề khảo sát HSG lớp 9 môn Toán tháng 10 năm 2022 phòng GD ĐT Chí Linh Hải Dương Chào mừng đến với đề khảo sát chất lượng cho đội tuyển học sinh giỏi môn Toán lớp 9 tháng 10 năm học 2022 – 2023 tại phòng Giáo dục và Đào tạo thành phố Chí Linh, tỉnh Hải Dương. Đề khảo sát bao gồm các câu hỏi sau: Tìm các số nguyên dương x, y thỏa mãn phương trình: x(y2 + 1) = 2y(16 – x). Cho a, b, c, k là các số nguyên thỏa mãn: a3 + b3 + c3 − 1 = k2 – 2k – 2a + b – 2c. Chứng minh rằng k − 1 chia hết cho 3. Cho nửa đường tròn (O;R) đường kính BC. A là điểm di động trên nửa đường tròn. Vẽ AH vuông góc với BC tại H. Đường tròn đường kính AH cắt AB, AC lần lượt tại D, E và cắt (O) tại M. AO cắt DE tại I. Tính DE3/BD.CE theo R. Tính: AI/HB + AI/HC. Xác định vị trí của điểm A để diện tích tam giác ABH lớn nhất. Hãy tự tin và cố gắng hết mình để hoàn thành đề khảo sát này. Chúc các em thành công và đạt kết quả cao trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi huyện Toán 9 năm 2022 - 2023 phòng GDĐT Yên Bình - Yên Bái
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp huyện môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Yên Bình, tỉnh Yên Bái (đề chính thức và đề dự bị); đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm; kỳ thi được diễn ra vào ngày 29 tháng 11 năm 2022. Trích dẫn Đề học sinh giỏi huyện Toán 9 năm 2022 – 2023 phòng GD&ĐT Yên Bình – Yên Bái : + Tìm số tự nhiên biết: Nếu số đó cộng thêm 64 đơn vị hoặc bớt đi 35 đơn vị thì ta đều được một số chính phương. + Cho hình vuông ABCD cạnh a. Trên các cạnh BC và AD lần lượt lấy các điểm E và F sao cho CE = AF. Các đường thẳng AE, BF cắt đường thẳng CD theo thứ tự ở M và N. a) Chứng minh: CM.DN = a2; b) Gọi K là giao điểm của NA và MB. Chứng minh: 90o MKN; c) Các điểm E và F có vị trí như thế nào thì MN có độ dài nhỏ nhất? + Cho tứ giác ABCD có AC = 10cm, BD = 12cm và góc giữa AC và BD bằng 300. Tính diện tích tứ giác ABCD.
Đề chọn ĐT thi HSG tỉnh Toán 9 năm 2022 - 2023 phòng GDĐT Nghĩa Đàn - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn đội tuyển dự thi học sinh giỏi cấp tỉnh môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Nghĩa Đàn, tỉnh Nghệ An. Trích dẫn Đề chọn ĐT thi HSG tỉnh Toán 9 năm 2022 – 2023 phòng GD&ĐT Nghĩa Đàn – Nghệ An : + Cho hai số tự nhiên a, b thỏa mãn 3a2 + a = 4b2 + b. Chứng minh a – b và 4a + 4b + 1 đều là số chính phương. + Cho tam giác ABC nhọn (AB < AC). Đường tròn tâm I nội tiếp tam giác ABC lần lượt tiếp xúc với BC, CA, AB tại D, E, F. Gọi M là trung điểm của BC. Gọi N là giao điểm của ID và EF. Qua N kẻ đường thẳng song song với BC cắt AB, AC tại Q và P. Qua A kẻ đường thẳng song song với BC cắt EF tại K. a) Chứng minh IP = IQ. b) Chứng minh IAM = FKI. c) Gọi S, L, V lần lượt là giao điểm của AI, BI, CI với BC, CA và AB. Chứng minh. + Cho p là số nguyên tố lớn hơn 5. Chứng minh rằng tồn tại một số có dạng 111…11 chia hết cho p.
Đề HSG Toán 9 vòng 3 năm 2022 - 2023 phòng GDĐT Nghi Lộc - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn đội tuyển dự thi học sinh giỏi cấp tỉnh môn Toán 9 vòng 3 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Nghi Lộc, tỉnh Nghệ An.
Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 - 2023 sở GDĐT Khánh Hòa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán THCS năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Khánh Hòa; kỳ thi được diễn ra vào ngày 07 tháng 12 năm 2022.