Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi huyện Toán 7 năm 2014 - 2015 phòng GDĐT Yên Lập - Phú Thọ

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề học sinh giỏi huyện Toán 7 năm 2014 – 2015 phòng GD&ĐT Yên Lập – Phú Thọ; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi huyện Toán 7 năm 2014 – 2015 phòng GD&ĐT Yên Lập – Phú Thọ : + Ba lớp 7A, 7B, 7C cùng mua một số gói tăm từ thiện, lúc đầu số gói tăm dự định chia cho ba lớp tỉ lệ với 5:6:7 nhưng sau đó chia theo tỉ lệ 4:5:6 nên có một lớp nhận nhiều hơn dự định 4 gói. Tính tổng số gói tăm mà ba lớp đã mua. + Cho xAy = 600 có tia phân giác Az. Từ điểm B trên Ax kẻ BH vuông góc với Ay tại H, kẻ BK vuông góc với Az và Bt song song với Ay, Bt cắt Az tại C. Từ C kẻ CM vuông góc với Ay tại M. Chứng minh: a) K là trung điểm của AC. b) KMC là tam giác đều. c) Cho BK = 2cm. Tính các cạnh AKM. + Tìm nghiệm nguyên dương của phương trình x + y + z = xyz.

Nguồn: toanmath.com

Đọc Sách

Đề thi HSG Toán 7 năm 2020 - 2021 phòng GDĐT thành phố Sầm Sơn - Thanh Hóa
Đề thi HSG Toán 7 năm 2020 – 2021 phòng GD&ĐT thành phố Sầm Sơn – Thanh Hóa gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút, đề thi có lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi HSG Toán 7 năm 2020 – 2021 phòng GD&ĐT thành phố Sầm Sơn – Thanh Hóa : + Số M được chia thành ba phần tỉ lệ với nhau như 0,25 : 0,375 : 0,1(3). Tìm số M biết rằng tổng các bình phương của ba phần đó bằng 4564. + Tìm các giá trị nguyên của x để biểu thức N = 2 3 4 1 2 x x x có giá trị nguyên. + Cho tam giác ABC có 0 ABC ACB 30. Trên tia đối của tia AC lấy điểm D sao cho AD = AC. Lấy điểm E thuộc cạnh CD sao cho 0 DBE = 30. Gọi P là điểm trên cạnh BC sao cho BP = BD. Vẽ PQ vuông góc với CD. a) Chứng minh rằng tam giác AEB là tam giác vuông. b) Chứng minh rằng 2 2 2 1 1 1 BE BC BD. c) Chứng minh rằng EB = EQ. d) So sánh hai đoạn thẳng AE và AQ.
Đề thi HSG Toán 7 năm 2019 - 2020 phòng GDĐT Lục Nam - Bắc Giang
Thứ Hai ngày 01 tháng 06 năm 2020, phòng Giáo dục và Đào tạo Lục Nam, tỉnh Bắc Giang tổ chức kỳ thi chọn học sinh giỏi cấp huyện môn Toán lớp 7 năm học 2019 – 2020. Đề thi HSG Toán 7 năm 2019 – 2020 phòng GD&ĐT Lục Nam – Bắc Giang gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút. Trích dẫn đề thi HSG Toán 7 năm 2019 – 2020 phòng GD&ĐT Lục Nam – Bắc Giang : + Một cửa hàng có ba cuộn vải với tổng chiều dài ba cuộn vải là 186 m. Giá tiền mỗi mét vải của ba cuộn là như nhau. Sau khi bán được một ngày, cửa hàng còn lại 2/3 cuộn vải thứ nhất; 1/3 cuộn vải thứ hai; 3/5 cuộn vải thứ ba. Số tiền bán được của ba cuộn tỉ lệ với 2 : 3 : 2. Tính số vải đã bán được của mỗi cuộn vải trong ngày đó. + Tìm các số nguyên dương x, y, z sao cho: x + y + z = xyz. + Biết n là số nguyên không chia hết cho 2 và 3. Chứng minh 4n^2 + 3n + 5 chia hết cho 6.
15 đề thi HSG cấp huyện Toán 7 có lời giải chi tiết
Nhằm cung cấp tư liệu để các em học sinh lớp 7 ôn luyện chuẩn bị cho kỳ thi học sinh giỏi Toán lớp 7 cấp huyện, THCS. giới thiệu đến các em tài liệu tuyển chọn 15 đề thi HSG cấp huyện Toán 7 có lời giải chi tiết, tài liệu gồm 74 trang được tổng hợp bởi tác giả Toán Họa. Trích dẫn nội dung tài liệu 15 đề thi HSG cấp huyện Toán 7 có lời giải chi tiết: + Tìm một số tự nhiên có 3 chữ số, biết rằng nếu tăng chữ số hàng trăm thêm n đơn vị đồng thời giảm chữ số hàng chục và giảm chữ số hàng đơn vị đi n đơn vị thì được một số có 3 chữ số gấp n lần số có 3 chữ số ban đầu. [ads] + Cho đoạn thẳng AB. Trên cùng một nửa mặt phẳng có bờ là đường thẳng AB vẽ hai tia Ax và By lần lượt vuông góc với AB tại A và B. Gọi O là trung điểm của đoạn thẳng AB. Trên tia Ax lấy điểm C và trên tia By lấy điểm D sao cho góc COD bằng 90 độ. a) Chứng minh rằng: AC + BD = CD. b) Chứng minh rằng: AC.BD = AB^2/4. + Cho tam giác ABC có góc A = 3B = 6C. a) Tính số đo các góc của tam giác ABC. b) Kẻ AD vuông góc với BC (D thuộc BC). Chứng minh: AD < BD < CD.
Đề thi học sinh giỏi Toán 7 năm 2018 - 2019 phòng GDĐT Đông Hưng - Thái Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi học sinh giỏi Toán 7 năm 2018 – 2019 phòng GD&ĐT Đông Hưng – Thái Bình; đề thi có đáp án + lời giải chi tiết + hướng dẫn chấm điểm. Trích dẫn đề thi học sinh giỏi Toán 7 năm 2018 – 2019 phòng GD&ĐT Đông Hưng – Thái Bình : + Cho tam giác ABC có góc A tù. Kẽ AD AB và AD = AB (tia AD nằm giữa hai tia AB và AC). Kẽ AE AC và AE = AC (tia AE nằm giữa hai tia AB và AC). Gọi M là trung điểm của BC. Chứng minh rằng: AM DE. + Cho tam giác ABC, O là trung điểm của BC. Từ B kẻ BD vuông góc với AC (D thuộc AC). Từ C kẻ CE vuông góc với AB (E thuộc AB). a. Chứng minh rằng: OD = 1/2BC. b. Trên tia đối của tia DE lấy điểm N, trên tia đối của tia ED lấy điểm M sao cho DN = EM. Chứng minh rằng: Tam giác OMN là tam giác cân. + Không dùng máy tính, hãy tính giá trị của biểu thức S.