Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG lớp 9 môn Toán cấp quận năm 2022 2023 phòng GD ĐT Hải An Hải Phòng

Nội dung Đề thi HSG lớp 9 môn Toán cấp quận năm 2022 2023 phòng GD ĐT Hải An Hải Phòng Bản PDF - Nội dung bài viết Đề thi HSG Toán lớp 9 cấp quận năm 2022 - 2023 Hải An, Hải Phòng Đề thi HSG Toán lớp 9 cấp quận năm 2022 - 2023 Hải An, Hải Phòng Sytu xin gửi đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán lớp 9 cấp quận năm học 2022 - 2023 của phòng Giáo dục và Đào tạo UBND quận Hải An, thành phố Hải Phòng. Đề thi này bao gồm đáp án, hướng dẫn giải chi tiết và thang chấm điểm. Đề thi gồm nhiều câu hỏi khó và phức tạp như: Cho đường tròn (O; R) và một điểm A nằm ngoài đường tròn (O). Qua A lần lượt kẻ các tiếp tuyến AB, AC đến đường tròn (O) (B, C là các tiếp điểm. Lấy điểm D thuộc đường tròn (O) sao cho BD // AO. Đường thẳng AD cắt đường tròn (O) tại điểm thứ hai E. Gọi M là trung điểm của AC. a) Chứng minh rằng ME là tiếp tuyến của đường tròn (O) b) Gọi T là giao điểm của các đường thẳng ME, BC, I là giao điểm của các đường thẳng DE, BC. Chứng minh OI AT c) Qua E kẻ đường thẳng song song với đường thẳng AB cắt các đường thẳng BC, BD lần lượt tại các điểm P và Q. Chứng minh rằng: PQ = PE Trên bảng ta viết 3 số 1 2 2 2. Mỗi bước ta chọn 2 số a b bất kỳ trên bảng, xóa chúng đi và thay bởi 2 số 2 2 a ba b và giữ nguyên số còn lại. Hỏi sau một số hữu hạn bước, ta có thể thu được 3 số 1 2 1 2 2 2 trên bảng được không? Cho các số nguyên dương abc thỏa mãn 222 abc. Chứng minh rằng ab chia hết cho: abc. Đề thi này đòi hỏi sự kiên nhẫn, quan sát kỹ lưỡng và kỹ năng giải quyết vấn đề linh hoạt của các thí sinh. Chúc các em học sinh lớp 9 đạt kết quả cao trong kỳ thi HSG môn Toán cấp quận năm học 2022 - 2023 này!

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi Toán THCS cấp tỉnh năm 2023 - 2024 sở GDĐT Phú Yên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán THCS cấp tỉnh năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Phú Yên; kỳ thi được diễn ra vào ngày 06 tháng 03 năm 2024. Trích dẫn Đề học sinh giỏi Toán THCS cấp tỉnh năm 2023 – 2024 sở GD&ĐT Phú Yên : + Cho hình vuông ABCD, I là trung điểm của cạnh AB. Dựng đường tròn tâm I đường kính AB. Tiếp tuyến DE với đường tròn (I) cắt cạnh BC tại F (E là tiếp điểm). a) Biết EF = 6,25 cm, tính cạnh của hình vuông. b) Trên nửa đường tròn đường kính AB (phần không cùng phía với hình vuông ABCD) lấy các điểm M, N sao cho BM = MN = 15 cm (M nằm giữa B và N). Tính chu vi tứ giác BMNA. + Cho tam giác ABC vuông tại A. D là điểm di động trên cạnh AC. Đường thẳng qua A và vuông góc với BD cắt đường thẳng qua C và vuông góc với AC tại E. Chứng minh rằng đường tròn đường kính DE đi qua điểm cố định thứ hai (khác điểm C).
Đề học sinh giỏi tỉnh Toán 9 năm 2023 - 2024 sở GDĐT Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 9 năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Nghệ An. Trích dẫn Đề học sinh giỏi tỉnh Toán 9 năm 2023 – 2024 sở GD&ĐT Nghệ An : + Cho đường tròn (O;R) cố định và điểm A cố định nằm ngoài đường tròn (O;R). Từ điểm A vẽ hai tiếp tuyến AB, AC tới đường tròn (O;R) (B, C là các tiếp điểm). Qua A vẽ đường thẳng cố định cắt đường tròn (O;R) tại hai điểm phân biệt I và E (I nằm giữa hai điểm A, E và EBC < 90°). Gọi H là giao điểm của AO và BC. Qua H vẽ đường thẳng (d) song song với BE, biết (d) cắt các đường thẳng BI, BA lần lượt tại Q và N. a) Chứng minh rằng BI/BE = CI/CE. b) Chứng minh rằng Q là trung điểm của NH. c) Vẽ đường tròn (P;R1) thay đổi nhưng luôn đi qua hai điểm I và E. Từ A vẽ hai tiếp tuyến AD, AJ với đường tròn (P;R1) (D, J là các tiếp điểm). Chứng minh đường thẳng DJ luôn đi qua một điểm cố định. + Trong phòng có 121 người, biết mỗi người quen với ít nhất 81 người khác. Chứng minh rằng trong phòng phải có 4 người từng đôi một quen nhau.
Đề học sinh giỏi Toán THCS cấp tỉnh năm 2023 - 2024 sở GDĐT Sơn La
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán THCS cấp tỉnh năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Sơn La; kỳ thi được diễn ra vào ngày 03 tháng 03 năm 2024. Trích dẫn Đề học sinh giỏi Toán THCS cấp tỉnh năm 2023 – 2024 sở GD&ĐT Sơn La : + Trong mặt phẳng với hệ trục tọa độ Oxy, cho điểm A(1;3), parabol (P) và đường thẳng (d) có phương trình lần lượt là: y = x2 và y = ax + 3 – a. a) Chứng minh rằng với mọi giá trị của a đường thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt. Giả sử B và C là hai giao điểm của (d) và (P). Tìm a để AB = 2AC. + Cho đường tròn (O;R) và dây cung BC = R3 cố định. Điểm A di động trên cung lớn BC sao cho tam giác ABC nhọn. Gọi E là điểm đối xứng với B qua AC và F là điểm đối xứng với C qua AB. Các đường tròn ngoại tiếp các tam giác ABE và ACF cắt nhau tại K (K không trùng với A). Gọi H là giao điểm của BE và CF. a) Chứng minh KA là đường phân giác trong của góc BKC. b) Chứng minh tứ giác BHCK nội tiếp. c) Xác định vị trí điểm A để diện tích tứ giác BHCK lớn nhất, tính điện tích lớn nhất của tứ giác đó theo R. d) Chứng minh đường thẳng AK luôn đi qua một điểm cố định.
Đề học sinh giỏi cấp tỉnh Toán THCS năm 2023 - 2024 sở GDĐT Hưng Yên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán THCS năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Hưng Yên; đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán THCS năm 2023 – 2024 sở GD&ĐT Hưng Yên : + Trong mặt phẳng toạ độ Oxy, cho điểm M(3; 5). Lập phương trình đường thẳng d đi qua M và cắt các tia Ox, Oy tại hai điểm phân biệt A, B sao cho diện tích tam giác OAB bằng 30 (đvdt). + Cho tam giác nhọn ABC có H, G lần lượt là trực tâm, trọng tâm và HG song song với BC. Tính tan B·tan C. + Cho nửa đường tròn tâm O đường kính AB. Lấy điểm H cố định thuộc đoạn thẳng OA (H không trùng với O và A). Đường thẳng vuông góc với AB tại H cắt nửa đường tròn tâm O tại C. Gọi D là điểm đối xứng với A qua C; I, J lần lượt là trung điểm của CH và DH. a) Chứng minh hai tam giác CHJ và HBI đồng dạng. b) Gọi Bx là tia tiếp tuyến của nửa đường tròn tâm O. Lấy điểm E di động trên Bx (E không trùng với B). Đường thẳng qua H vuông góc với AE cắt đường thẳng BE tại F. Chứng minh đường tròn đường kính EF luôn đi qua hai điểm cố định khi E di động trên tia Bx.