Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi Toán 10 năm 2023 - 2024 trường THPT Thuận Thành 1 - Bắc Ninh

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi chọn học sinh giỏi cấp trường môn Toán 10 năm học 2023 – 2024 trường THPT Thuận Thành số 1, tỉnh Bắc Ninh; kỳ thi được diễn ra vào ngày 14 tháng 03 năm 2024. Trích dẫn Đề học sinh giỏi Toán 10 năm 2023 – 2024 trường THPT Thuận Thành 1 – Bắc Ninh : + Trong trận chung kết WC 2022, L. Messi đã có cơ hội thực hiện cú sút phạt trực tiếp trước khung thành Pháp. Các cầu thủ Pháp lập thành một hàng rào chắn cách điểm đá phạt 9m và cầu thủ cao nhất trong hàng rào là 2m. Giả định rằng quỹ đạo quả bóng sau khi Messi thực hiện cú sút là một Parabol (như hình vẽ) và nó đạt được chiều cao cực đại là 3m sau khi rời chân Messi 14m. Hỏi cú đá phạt này của Messi có đưa bóng đi qua điểm cao nhất của hàng rào hay không? Tại sao? + Một sa mạc có dạng hình chữ nhật ABCD có DC = 25km, CB = 20km và P, Q lần lượt là trung điểm của AD, BC. Một người cưỡi ngựa đi từ A đến C bằng cách đi thẳng từ A đến một điểm X thuộc đoạn PQ, rồi lại đi thẳng từ X đến C. Vận tốc của ngựa khi đi trên phần ABQP là 15km/h, vận tốc của ngựa khi đi trên phần PQCD là 30km/h. Tìm vị trí của X để thời gian ngựa di chuyển từ A đến C là ít nhất? + Khi dạy ba lớp Toán 12A2, 12A5, 12A9 cô Thắm có chọn ra được 10 học sinh mang tên “các nhà toán học thông thái” (là các bạn rất chăm ngoan tích cực và say sưa học toán cũng như có tinh thần giúp đỡ các bạn học kém hơn trong lớp khi học bài). Trong đó có 4 bạn học sinh lớp 12A2, 3 học sinh lớp 12A5, 3 học sinh lớp 12A9. Cô Thắm xếp tất cả 10 học sinh này thành một hàng ngang để lần lượt trả lời các câu hỏi vấn đáp. Hỏi cô Thắm có bao nhiêu cách xếp sao cho: a) các học sinh cùng lớp đứng cạnh nhau. b) hai học sinh cùng lớp không được đứng cạnh nhau.

Nguồn: toanmath.com

Đọc Sách

Đề thi học sinh giỏi cấp trường Toán 10 năm 2020 - 2021 trường chuyên Bắc Ninh
Đề thi học sinh giỏi cấp trường Toán 10 năm học 2020 – 2021 trường THPT chuyên Bắc Ninh gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút. Trích dẫn đề thi học sinh giỏi cấp trường Toán 10 năm 2020 – 2021 trường chuyên Bắc Ninh : + Cho các số nguyên dương được viết vào 441 ô của bảng vuông 21×21.Mỗi hàng và mỗi cột có nhiều nhất 6 giá trị khác nhau. Chứng minh rằng tồn tại một số nguyên có mặt ở ít nhất 3 cột và ít nhất 3 hàng. + Cho tam giác ABC với O, I theo thứ tự là tâm đường tròn ngoại tiếp,nội tiếp tam giác.Chứng minh rằng AIOd ≤ 90◦ khi và chỉ khi AB + AC ≥ 2BC. + Cho a, b, c là các số thực dương thỏa mãn ab + bc + ca = 3abc. Tìm giá trị nhỏ nhất của biểu thức P.
Đề thi học sinh giỏi tỉnh Toán 10 năm 2020 - 2021 sở GDĐT Hà Tĩnh
Đề thi học sinh giỏi tỉnh Toán 10 năm 2020 – 2021 sở GD&ĐT Hà Tĩnh gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút, kỳ thi được diễn ra vào sáng thứ Sáu ngày 12 tháng 03 năm 2021. Trích dẫn đề thi học sinh giỏi tỉnh Toán 10 năm 2020 – 2021 sở GD&ĐT Hà Tĩnh : + Một cửa hàng chuyên kinh doanh xe máy điện với chi phí mua vào là 23 triệu đồng và bán ra với giá 27 triệu đồng mỗi chiếc. Với giá bán này thì số lượng xe mà khách hàng sẽ mua trong một năm là 600 chiếc. Nhằm mục tiêu đẩy mạnh hơn nữa lượng tiêu thụ dòng xe này, chủ cửa hàng dự định giảm giá bán và ước tính rằng, theo tỉ lệ nếu cứ giảm 100 nghìn đồng mỗi chiếc thì số lượng xe bán ra trong một năm sẽ tăng thêm 20 chiếc. Vậy doanh nghiệp phải bán với giá mới là bao nhiêu để sau khi giảm giá, lợi nhuận thu được sẽ là cao nhất? + Cho tam giác ABC có góc A = 30 độ, bán kính đường tròn nội tiếp tam giác r = √3 và độ dài đường cao kẻ từ đỉnh A là h thỏa mãn 1/h2 = 1/AB2 + 1/AC2. Tính giá trị T = (sin B)^2 – (cos C)^2 và bán kính đường tròn ngoại tiếp tam giác ABC. + Trong mặt phẳng tọa độ Oxy, cho A(2;3), B(-1;5) và đường thẳng d: 2x + y + 1 = 0. Tìm tọa độ điểm C thuộc đường thẳng d và tọa độ điểm D thuộc đoạn thẳng AC, biết rằng tam giác ABC cân tại B và DC = √5/5.
Đề thi HSG cấp trường Toán 10 năm 2020 - 2021 trường Cẩm Xuyên - Hà Tĩnh
Ngày … tháng 01 năm 2021, trường THPT Cẩm Xuyên, tỉnh Hà Tĩnh tổ chức kỳ thi chọn học sinh giỏi cấp trường môn Toán lớp 10 năm học 2020 – 2021. Đề thi HSG cấp trường Toán 10 năm 2020 – 2021 trường Cẩm Xuyên – Hà Tĩnh gồm 01 trang với 07 bài toán dạng tự luận, thời gian làm bài 150 phút, đề thi có lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi HSG cấp trường Toán 10 năm 2020 – 2021 trường Cẩm Xuyên – Hà Tĩnh : + Cho hình vuông ABCD có cạnh bằng a. Gọi G là trọng tâm tam giác ABC và M, N là hai điểm lần lượt thuộc hai cạnh AB, CD sao cho AB = 6BM, DC = 3DN. a) Tính độ dài của vectơ AB + AD theo a. b) Chứng minh ba điểm M, N, G thẳng hàng. + Cho hàm số y = x2 + mx + 1 (m là tham số). a) Lập bảng biến thiên của hàm số đã cho khi m = -4. b) Tìm điều kiện của tham số m để đồ thị hàm số đã cho cắt đường thẳng y = x + 1 tại hai điểm phân biệt nằm về một phía của trục hoành. + Cho hàm số y = ax2 + bx + c có đồ thị như hình vẽ dưới đây. Chứng minh rằng phương trình (1 – c)x2 + (2 – b)x + 1 – a = 0 luôn có hai nghiệm phân biệt.
Đề thi HSG Toán 10 cấp trường năm 2020 - 2021 trường THPT Nguyễn Huệ - Quảng Nam
Đề thi HSG Toán 10 cấp trường năm 2020 – 2021 trường THPT Nguyễn Huệ – Quảng Nam gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 90 phút, đề thi có ma trận và lời giải chi tiết. Ma trận đề thi HSG Toán 10 cấp trường năm 2020 – 2021 trường THPT Nguyễn Huệ – Quảng Nam:CHỦ ĐỀMÔ TẢHệ phương trình.Thông hiểu: Giải hệ hai phương trình bậc nhất hai ẩn.Phương trình bậc hai một ẩn.Nhận biết: Giải phương trình quy về phương trình bậc hai một ẩn. Nhận biết: Chứng minh phương trình bậc hai luôn có nghiệm hoặc vô nghiệm với mọi tham số.Hệ thức Vi-et và ứng dụng.Vận dụng thấp: Tìm tất cả các giá trị của tham số m thỏa điều kiện cho trước.Hàm số y = ax^2 (a khác 0).Nhận biết: Vẽ parabol. Thông hiểu: Tương quan giữa đường thẳng và parabol.Biến đổi đơn giản biểu thức chứa căn thức bậc hai.Vận dụng thấp: Rút gọn biểu thức chứa căn thức bậc hai.Một số hệ thức về cạnh và đường cao trong tam giác vuông.Thông hiểu: Chứng minh đẳng thức có liên quan đến cạnh và đường cao của tam giác vuông. Vận dụng cao: Ứng dụng một số hệ thức về cạnh và đường cao trong tam giác vuông để giải một số bài toán liên quan. Vận dụng cao: Ứng dụng một số hệ thức về cạnh và đường cao trong tam giác vuông để giải một số bài toán liên quan.