Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HSG lớp 12 môn Toán năm 2022 2023 lần 1 trường THPT Cẩm Thủy 1 Thanh Hóa

Nội dung Đề HSG lớp 12 môn Toán năm 2022 2023 lần 1 trường THPT Cẩm Thủy 1 Thanh Hóa Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi khảo sát chất lượng đội tuyển học sinh giỏi liên trường môn Toán lớp 12 năm 2022 – 2023 lần 1 trường THPT Cẩm Thủy 1, tỉnh Thanh Hóa; đề thi hình thức trắc nghiệm với 50 câu hỏi và bài toán, thời gian làm bài 90 phút (không kể thời gian giao đề); đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề HSG Toán lớp 12 năm 2022 – 2023 lần 1 trường THPT Cẩm Thủy 1 – Thanh Hóa : + Một cơ sở sản xuất có hai bể nước hình trụ có chiều cao bằng nhau, bán kính đáy lần lượt bằng 1mvà 1,8m . Chủ cơ sở dự định làm một bể nước mới, hình trụ, có cùng chiều cao và có thể tích bằng tổng thể tích của hai bể nước trên. Bán kính đáy của bể nước dự định làm gần nhất với kết quả nào dưới đây? + Người ta thiết kế một thùng chứa hình trụ (như hình vẽ) có thể tích V. Biết rằng giá của vật liệu làm mặt đáy và nắp của thùng bằng nhau và đắt gấp ba lần so với giá vật liệu để làm mặt xung quanh của thùng (chi phí cho mỗi đơn vị diện tích). Gọi chiều cao của thùng là h và bán kính đáy là r. Tính tỉ số h r sao cho chi phí vật liệu sản xuất thùng là nhỏ nhất? + Trong hội thi văn nghệ chào mừng ngày nhà giáo Việt Nam có 9 tiết mục lọt vào vòng chung khảo. Trong đó lớp 10A có 2 tiết mục, lớp 10B có 3 tiết mục và 4 tiết mục còn lại của 4 lớp khác nhau. Ban tổ chức sắp xếp thứ tự thi của các lớp một cách ngẫu nhiên. Tính xác suất để không có hai tiết mục của cùng một lớp liên tiếp nhau. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi HSG Toán 12 năm 2020 - 2021 trường THPT chuyên Lê Khiết - Quảng Ngãi
Thứ Bảy ngày 19 tháng 09 năm 2020, trường THPT chuyên Lê Khiết, tỉnh Quảng Ngãi tổ chức kỳ thi chọn học sinh giỏi lớp 12 môn Toán năm học 2020 – 2021. Đề thi HSG Toán 12 năm 2020 – 2021 trường THPT chuyên Lê Khiết – Quảng Ngãi gồm 01 trang với 07 bài toán dạng tự luận, thời gian làm bài 180 phút (không kể thời gian phát đề). Trích dẫn đề thi HSG Toán 12 năm 2020 – 2021 trường THPT chuyên Lê Khiết – Quảng Ngãi : + Cho một đa giác đều có 170 đường chéo. Chọn ngẫu nhiên 3 đỉnh từ các đỉnh của đa giác đó. Tính xác suất để tam giác tạo ra từ các đỉnh được chọn là tam giác vuông không cân. + Có bao nhiêu số nguyên dương n < 2021 để đa thức x^2^n + x + 1 chia hết cho đa thức x^2 + x + 1? + Trên bảng có ghi mười số 1; 2; 3; 4; . . . ; 10. Ở mỗi bước ta xóa đi hai số a, b rồi thêm vào số mới a + b + ab/f(a;b) với f(a;b) là tổng tất cả các số còn ghi trên bảng trừ hai số a, b. Cứ làm như thế cho đến khi trên bảng chỉ còn hai số x, y (x >= y). a) Gọi Sk là tổng của tất cả các tích của các cặp số còn ghi trên bảng ở bước thứ k. Chứng minh rằng Si = Sk với mọi i, k. b) Tìm giá trị lớn nhất có thể có của x.
Đề thi thử HSG Toán vòng 1 lần 2 năm 2020 - 2021 trường chuyên Hùng Vương - Bình Dương
Ngày … tháng 09 năm 2020, trường THPT chuyên Hùng Vương, tỉnh Bình Dương tổ chức kỳ thi thử cho đội tuyển học sinh giỏi môn Toán vòng 1 lần 2 năm học 2020 – 2021. Đề thi thử HSG Toán vòng 1 lần 2 năm 2020 – 2021 trường chuyên Hùng Vương – Bình Dương gồm có 01 trang với 04 bài toán dạng tự luận, thời gian làm bài 180 phút (không kể thời gian phát đề), thí sinh không được sử dụng tài liệu và máy tính khi làm bài. Trích dẫn đề thi thử HSG Toán vòng 1 lần 2 năm 2020 – 2021 trường chuyên Hùng Vương – Bình Dương : + Cho tam giác ABC nhọn nội tiếp đường tròn (O), có trực tâm H. Gọi M, N, P lần lượt là trung điểm của BC, CA, AB. Đường tròn (MNP) lần lượt cắt các đường tròn (MCA), (MAB) tại điểm thứ hai là E, F. Giả sử ME, MF theo thứ tự cắt AC, AB tại K, L. a) Chứng minh rằng OH vuông góc với KL tại điểm S. b) Gọi G là trọng tâm của tam giác ABC. Các điểm Y, Z lần lượt là hình chiếu của B, C lên AC, AB. Gọi X là giao điểm của KZ và LY. Chứng minh rằng A, G, S, X cùng nằm trên một đường tròn. + Tìm tất cả các đa thức P(x) với hệ số thực sao cho P(a)^2 + P(b)^2 + P(c)^2 với mọi bộ số (a;b;c) thỏa mãn ab + bc + ca + 1 = 0. + Tìm tất cả các bộ ba số tự nhiên (m;n;k) thỏa mãn 5^m + 7^n = k^3.
Đề thi HSG Toán 12 (vòng 2) năm 2020 - 2021 trường chuyên Nguyễn Du - Đắk Lắk
Thứ Năm ngày 10 tháng 09 năm 2020, trường THPT chuyên Nguyễn Du, tỉnh Đắk Lắk tổ chức kỳ thi chọn đội tuyển học sinh giỏi môn Toán lớp 12 năm học 2020 – 2021 vòng thi số 2. Đề thi HSG Toán 12 (vòng 2) năm 2020 – 2021 trường chuyên Nguyễn Du – Đắk Lắk được biên soạn theo dạng đề tự luận, đề thi gồm có 01 trang với 05 bài toán, thời gian học sinh làm bài thi là 180 phút. Trích dẫn đề thi HSG Toán 12 (vòng 2) năm 2020 – 2021 trường chuyên Nguyễn Du – Đắk Lắk : + Cho tam giác ABC (AC > AB). Lấy hai điểm M, N lần lượt trên AB và AC sao cho MN song song với BC. Gọi P là giao điểm của hai đoạn thẳng BN và CM. Gọi A’ là điểm đối xứng của A qua đường thẳng BC; (w) là đường tròn ngoại tiếp tam giác AMN. a) Gọi E là điểm thuộc đường tròn (w) sao cho AE // MN. Chứng minh rằng: E, P, A’ thẳng hàng. b) Gọi F là giao điểm thứ hai của A’P với đường tròn (w) và I là tâm đường tròn ngoại tiếp tam giác AA’F. Chứng minh IF tiếp xúc với đường tròn ngoại tiếp tam giác BFC. + Cho tập hợp A = {1;2; . . . ; 101}, tô màu ít nhất 50 phần tử của A sao cho: nếu a và b thuộc A (a, b không nhất thiết phân biệt) được tô màu và a + b thuộc A thì a + b cũng được tô màu. Gọi S là tổng tất cả các số không được tô màu của A. Tìm giá trị lớn nhất của S. + Tìm tất cả n tự nhiên để 2^2^2^ . . .  ^2 (n số 2) – 2 viết được thành a^3 + b^3 + c^3 với a, b, c nguyên.
Đề thi HSG Toán 12 (vòng 1) năm 2020 - 2021 trường chuyên Nguyễn Du - Đắk Lắk
Thứ Tư ngày 09 tháng 09 năm 2020, trường THPT chuyên Nguyễn Du, tỉnh Đắk Lắk tổ chức kỳ thi chọn đội tuyển học sinh giỏi môn Toán lớp 12 năm học 2020 – 2021 vòng thi số 1. Đề thi HSG Toán 12 (vòng 1) năm 2020 – 2021 trường chuyên Nguyễn Du – Đắk Lắk được biên soạn theo dạng đề tự luận, đề thi gồm có 01 trang với 05 bài toán, thời gian học sinh làm bài thi là 180 phút. Trích dẫn đề thi HSG Toán 12 (vòng 1) năm 2020 – 2021 trường chuyên Nguyễn Du – Đắk Lắk : + Cho tứ giác lồi ABCD nội tiếp đường tròn (C). Gọi M, N, P lần lượt là giao điểm của các cặp đường thẳng AB và CD, AD và BC, AC và BD. Gọi I1, I2, I3, I4 lần lượt là tâm đường tròn bàng tiếp các tam giác ABN, BCM, CDN và ADM tương ứng với các đỉnh A, C, D và D. a) Chứng minh các điểm I1, I2, I3, I4 đồng viên. b) Gọi I là tâm đường tròn qua I1, I2, I3, I4. Chứng minh PI vuông góc với MN. + Tìm tất cả các hàm số f: R → R thỏa mãn: f(x + f(y)) – f(f(x) – x) = f(y) – f(x) + 2x + 2y với mọi x, y thuộc R. + Chứng minh rằng với mọi n thuộc Z+, luôn tồn tại m thuộc N sao cho: (√2 – 1)^n = √(m + 1) – √m.