Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi Toán 9 cấp tỉnh năm 2020 - 2021 sở GDĐT Bắc Ninh

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đáp án, lời giải chi tiết và hướng dẫn chấm điểm đề thi học sinh giỏi Toán 9 cấp tỉnh năm học 2020 – 2021 sở GD&ĐT Bắc Ninh. Trích dẫn đề thi học sinh giỏi Toán 9 cấp tỉnh năm 2020 – 2021 sở GD&ĐT Bắc Ninh : + Cho 19 điểm trong đó không có 3 điểm nào thẳng hàng nằm trong một hình lục giác đều có cạnh bằng 1. Chứng minh rằng luôn tồn tại một tam giác có ít nhất một góc không lớn hơn 450 và nằm trong đường tròn có bán kính nhỏ hơn 3/5. + Cho tam giác ABC vuông tại A AB AC ngoại tiếp đường tròn tâm O. Gọi DEF lần lượt là tiếp điểm của (O) với các cạnh AB AC BC. Đường thẳng BO cắt các đường thẳng EF DF lần lượt tại I K. 1. Tính số đo góc BIF. 2. Giả sử M là điểm di chuyển trên đoạn CE. a. Khi AM = AB, gọi H là giao điểm của BM và EF. Chứng minh rằng ba điểm A O H thẳng hàng. b. Gọi N là giao điểm của đường thẳng BM với cung nhỏ EF của (O); P Q lần lượt là hình chiếu của N trên các đường thẳng DE và DF. Xác định vị trí điểm M để độ dài đoạn thẳng PQ lớn nhất. + Cho phương trình: 2 2 x mx m m 2 6 0 (m là tham số). 1. Tìm m để phương trình có hai nghiệm. 2. Với giá trị nào của m thì phương trình có hai nghiệm 1 x và 2 x sao cho 1 2 x x 8.

Nguồn: toanmath.com

Đọc Sách

Đề thi chọn học sinh giỏi tỉnh Toán 9 năm 2020 - 2021 sở GDĐT Thái Nguyên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi tỉnh Toán 9 năm 2020 – 2021 sở GD&ĐT Thái Nguyên.
Đề thi học sinh giỏi Toán 9 năm 2020 - 2021 sở GDĐT Hà Nam
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi học sinh giỏi Toán 9 năm 2020 – 2021 sở GD&ĐT Hà Nam. Trích dẫn đề thi học sinh giỏi Toán 9 năm 2020 – 2021 sở GD&ĐT Hà Nam : + Trong mặt phẳng Oxy, cho parabol (P): y = x2 và đường thẳng (d): y = mx + 2 (với m là tham số). Tìm tất cả các giá trị của m để (d) cắt (P) tại hai điểm phân biệt A, B sao cho diện tích tam giác OAB bằng 5 (đơn vị diện tích). + Cho tam giác ABC có ba góc nhọn, nội tiếp đường tròn (O). Các đường cao AD, BE, CF của tam giác ABC cắt nhau tại H, EF cắt (O) tại P và Q (P thuộc cung nhỏ AB). a) Chứng minh tam giác APQ cân. b) Chứng minh DH.DA = DE.DF. c) Lấy điểm M đối xứng với điểm P qua AB, điểm N đối xứng với điểm Q qua AC. Chứng minh MN // BC. + Cho đường tròn (I) nội tiếp tam giác ABC, (I) tiếp xúc với ba cạnh  BC, CA, AB lần lượt tại các điểm D, E, F. Gọi M là trung điểm của BC. Chứng minh các đường thẳng AM, EF, DI đồng quy.
Đề thi học sinh giỏi Toán 9 năm 2020 - 2021 sở GDĐT tỉnh Trà Vinh
Đề thi học sinh giỏi Toán 9 năm 2020 – 2021 sở GD&ĐT tỉnh Trà Vinh gồm 01 trang với 07 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút.
Đề thi học sinh giỏi cấp tỉnh Toán 9 năm 2020 - 2021 sở GDĐT Lạng Sơn
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 9 THCS năm học 2020 – 2021 sở Giáo dục và Đào tạo tỉnh Lạng Sơn; kỳ thi được diễn ra vào ngày 18 tháng 03 năm 2021; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học sinh giỏi cấp tỉnh Toán 9 năm 2020 – 2021 sở GD&ĐT Lạng Sơn : + Cho tam giác đều ABC nội tiếp đường tròn O R. Gọi H là một điểm di động trên đoạn thẳng OA (H khác O và HA HO). Đường thẳng đi qua H và vuông góc với OA cắt cung nhỏ AB tại M. Gọi K là hình chiếu vuông góc của M trên OB. a) Chứng minh BMK MAB. b) Các tiếp tuyến của O R tại A và B cắt tiếp tuyến tại M của O R lần lượt tại D và E OD OE cắt AB lần lượt tại F và G. Chứng minh rằng: OE OG OF OD. c) Tìm vị trí điểm H để chu vi tam giác MAB đạt giá trị lớn nhất. + Cho abc là các số thực dương thoả mãn 2 2 2 1 1 1 6 abc. Tìm giá trị nhỏ nhất của biểu thức 2 2 2 2 2 2 b c c a a b Q a b c b c a c a b. + Cho mỗi điểm trên mặt phẳng được tô bởi một trong hai màu xanh hoặc đỏ. Chứng minh rằng tồn tại một tam giác mà ba đỉnh và trọng tâm cùng màu.