Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Một số bài toán về đường tròn

Tài liệu gồm 116 trang, tuyển chọn một số bài toán về đường tròn hay và khó, có đáp án và lời giải chi tiết, giúp học sinh tham khảo trong quá trình ôn tập thi vào lớp 10 môn Toán và ôn thi học sinh giỏi môn Toán bậc THCS. A. MỘT SỐ KIẾN THỨC CẦN NHỚ I. Sự xác định đường tròn. 1. Định nghĩa. 2. Vị trí tương đối của một điểm đối với một đường tròn. 3. Cách xác định đường tròn. 4. Tính chất đối xứng của đường tròn. II. Liên hệ giữa đường kính và dây cung. 1. So sánh độ dài của đường kính và dây. 2. Quan hệ vuông góc giữa đường kính và dây. 3. Liên hệ giữa dây và khoảng cách từ tâm đến dây. III. Ví trí tương đối của đường thẳng và đường tròn. 1. Vị trí tương đối của đường thẳng và đường tròn. 2. Dấu hiệu nhận biết tiếp tuyến của đường tròn. 3. Tính chất của hai tiếp tuyến cắt nhau. 4. Đường tròn nội tiếp tam giác. 5. Đường tròn bàng tiếp tam giác. IV. Vị trí tương đối của hai đường tròn. 1. Tính chất đường nối tâm. 2. Vị trí tương đối của hai đường tròn. 3. Tiếp tuyến chung của hai đường tròn. V. Góc với đường tròn. 1. Góc ở tâm. 2. Góc nội tiếp. 3. Góc tạo bởi tia tiếp tuyến với dây cung. 4. Góc có đỉnh ở bên trong đường tròn và góc có đỉnh ở bên ngoài đừng tròn. 5. Tứ giác nội tiếp. 6. Đường tròn ngoại tiếp, đường tròn nội tiếp. 7. Độ dài đường tròn, cung tròn. Diện tích hình tròn, hình quạt tròn. VI. Một số kiến thức bổ sung. 1. Một số tính chất về tiếp tuyến. 2. Một số dấu hiệu nhận biết tứ giác nội tiếp. 3. Một số định lí hình học nổi tiếng. B. MỘT SỐ VÍ DỤ MINH HỌA C. BÀI TẬP TỰ LUYỆN D. HƯỚNG DẪN GIẢI

Nguồn: toanmath.com

Đọc Sách

Các bài toán sử dụng nguyên lý cực hạn
Nội dung Các bài toán sử dụng nguyên lý cực hạn Bản PDF - Nội dung bài viết Các ứng dụng của nguyên lý cực hạn trong giải bài toán Các ứng dụng của nguyên lý cực hạn trong giải bài toán Tài liệu bao gồm 20 trang và được trích dẫn từ một cuốn sách nổi tiếng về nguyên lý cực hạn. Trong cuốn sách, nguyên lý cực hạn được áp dụng để giải quyết các bài toán phức tạp trong đời sống và công việc hàng ngày. Việc áp dụng nguyên lý cực hạn trong giải quyết bài toán giúp tối ưu hóa kết quả và đưa ra những giải pháp hiệu quả nhất.
Các bài toán về nguyên lý Dirichlet trong số học
Nội dung Các bài toán về nguyên lý Dirichlet trong số học Bản PDF - Nội dung bài viết Các bài toán về nguyên lý Dirichlet trong số học Các bài toán về nguyên lý Dirichlet trong số học Được trích đoạn từ cuốn sách "Các bài toán về nguyên lý Dirichlet trong số học", tài liệu này bao gồm 26 trang các bài toán liên quan đến nguyên lý Dirichlet trong số học. Những bài toán này thường liên quan đến việc tìm kiếm nguyên hàm của một hàm số với điều kiện ban đầu cho trước, và có ứng dụng rất rộng rãi trong lĩnh vực toán học, khoa học máy tính và các ngành liên quan khác. Cuốn sách này cung cấp cái nhìn tổng quan về nguyên lý Dirichlet và giúp độc giả hiểu rõ hơn về cách áp dụng nguyên lý này vào các bài toán cụ thể.
Các bài toán về phần nguyên trong số học
Nội dung Các bài toán về phần nguyên trong số học Bản PDF - Nội dung bài viết Các bài toán về phần nguyên trong số học Các bài toán về phần nguyên trong số học Tài liệu này bao gồm 33 trang và được trích đoạn từ cuốn sách về các bài toán liên quan đến phần nguyên trong số học. Những vấn đề này thường liên quan đến việc làm tròn số, phân tích số nguyên, và tính toán các phép toán cơ bản trên số nguyên. Qua việc nghiên cứu tài liệu này, người đọc sẽ hiểu rõ hơn về cách thức giải quyết các vấn đề liên quan đến phần nguyên và áp dụng chúng vào thực tế.
Các bài toán về phương trình nghiệm nguyên
Nội dung Các bài toán về phương trình nghiệm nguyên Bản PDF - Nội dung bài viết Các bài toán về phương trình nghiệm nguyên Các bài toán về phương trình nghiệm nguyên Tài liệu này bao gồm 405 trang và được trích từ một cuốn sách chuyên về các bài toán liên quan đến phương trình nghiệm nguyên. Trong tài liệu này, các bài toán được trình bày một cách chi tiết và cụ thể, giúp người đọc dễ hiểu và áp dụng vào thực tế. Bạn sẽ tìm thấy nhiều cách tiếp cận và giải quyet cho các bài toán khó khăn trong lĩnh vực này, từ cơ bản đến nâng cao. Việc tìm hiểu và áp dụng kiến thức từ tài liệu này sẽ giúp bạn nâng cao kỹ năng giải quyet các bài toán liên quan đến phương trình nghiệm nguyên một cách hiệu quả.