Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi lớp 9 môn Toán năm 2022 2023 trường THCS Lý Nhật Quang Nghệ An (vòng 2)

Nội dung Đề học sinh giỏi lớp 9 môn Toán năm 2022 2023 trường THCS Lý Nhật Quang Nghệ An (vòng 2) Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán lớp 9 trường THCS Lý Nhật Quang Nghệ An (vòng 2) năm 2022 - 2023 Đề thi học sinh giỏi Toán lớp 9 trường THCS Lý Nhật Quang Nghệ An (vòng 2) năm 2022 - 2023 Xin chào quý thầy cô và các em học sinh lớp 9! Hôm nay, Sytu xin giới thiệu đến bạn đề thi chọn học sinh dự thi học sinh giỏi cấp tỉnh môn Toán lớp 9 năm học 2022-2023 tại trường THCS Lý Nhật Quang, huyện Đô Lương, tỉnh Nghệ An (vòng 2) với những câu hỏi thú vị và hấp dẫn sau: 1. Cho số nguyên tố P = abc với a, b, c là ba chữ số. Chứng minh rằng phương trình ax2 + bx + c = 0 không có nghiệm hữu tỷ. 2. Có tổng cộng 48 quả cân có khối lượng từ 1g đến 48g. Hãy phân chia tất cả các quả cân đó thành ba nhóm sao cho tổng khối lượng của từng nhóm bằng nhau. 3. Ban Giám hiệu trường THCS Lý Nhật Quang dự định mời 100 đại biểu đến dự sự kiện. Mỗi người trong số đó quen biết ít nhất 50 người khác. Chứng minh rằng Ban Giám Hiệu có thể xếp 4 người vào một bàn tròn sao cho mỗi người ngồi giữa hai người quen của mình. Đây sẽ là một cơ hội tuyệt vời để các em thể hiện tài năng và kiến thức Toán của mình. Chúc các em học tập tốt và thành công trong kỳ thi sắp tới! Xin cám ơn!

Nguồn: sytu.vn

Đọc Sách

Đề thi chọn học sinh giỏi tỉnh Toán THCS năm 2021 - 2022 sở GDĐT Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi tỉnh Toán THCS năm 2021 – 2022 sở GD&ĐT Thanh Hóa; kỳ thi được diễn ra vào Chủ Nhật ngày 26 tháng 12 năm 2021.
Đề thi học sinh giỏi Toán 9 năm 2021 - 2022 phòng GDĐT thành phố Ninh Bình
Đề thi học sinh giỏi Toán 9 năm 2021 – 2022 phòng GD&ĐT thành phố Ninh Bình gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút (không kể thời gian phát đề). Trích dẫn đề thi học sinh giỏi Toán 9 năm 2021 – 2022 phòng GD&ĐT thành phố Ninh Bình : + Cho đường tròn (O) và dây BC cố định (BC không phải là đường kính). Điểm A di động trên cung lớn BC sao cho tam giác ABC là tam giác nhọn. Gọi E là điểm đối xứng của B qua đường thẳng AC và F là điểm đối xứng của C qua đường thẳng AB. Gọi K là giao điểm của hai đường thẳng EC và FB, H là giao điểm của hai đường thẳng BE và CF. a) Chứng minh FAHB và ACKF là các tứ giác nội tiếp. b) Chứng minh KA là phân giác của góc BKC và ba điểm K, O, A thẳng hàng. c) Xác định vị trí của điểm A sao cho tứ giác BKCO có diện tích lớn nhất. + Cho 16 số nguyên dương lớn hơn 1 và nhỏ hơn 2021 đôi một nguyên tố cùng nhau. Chứng minh trong 16 số trên có ít nhất một số là số nguyên tố. + Cho 8045 điểm trên một mặt phẳng sao cho cứ 3 điểm bất kì thì tạo thành một tam giác có diện tích nhỏ hơn 1. Chứng minh rằng luôn có thể có ít nhất 2012 điểm nằm trong tam giác hoặc trên cạnh của một tam giác có diện tích nhỏ hơn 1.
Đề thi HSG Toán 9 năm 2021 - 2022 phòng GDĐT thành phố Vinh - Nghệ An
Đề thi HSG Toán 9 năm 2021 – 2022 phòng GD&ĐT thành phố Vinh – Nghệ An gồm 01 trang với 04 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút (không kể thời gian giao đề).
Đề thi HSG thành phố Toán 9 năm 2021 - 2022 phòng GDĐT Đà Lạt - Lâm Đồng
Đề thi HSG thành phố Toán 9 năm 2021 – 2022 phòng GD&ĐT Đà Lạt – Lâm Đồng gồm 02 trang với 10 bài toán dạng tự luận, thời gian làm bài 150 phút, kỳ thi được diễn ra vào thứ Ba ngày 14 tháng 12 năm 2021.