Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn HSG Toán 9 THCS năm 2018 - 2019 sở GD và ĐT Thái Bình

Đề thi chọn HSG Toán 9 THCS năm 2018 – 2019 sở GD và ĐT Thái Bình gồm 1 trang với 7 bài toán tự luận, thời gian làm bài 150 phút (không kể thời gian giao đề), đề nhằm tuyển chọn các em học sinh giỏi Toán 9 khối THCS để thành lập đội tuyển tham dự kỳ thi học sinh giỏi Toán 9 cấp Quốc gia, đề thi có lời giải chi tiết và thang chấm điểm. Trích dẫn đề thi chọn HSG Toán 9 THCS năm 2018 – 2019 sở GD và ĐT Thái Bình : + Cho tam giác ABC vuông tại A, đường cao AH, gọi I, J, K lần lượt là tâm các đường tròn nội tiếp các tam giác ABC, ABH, ACH. Gọi giao điểm của các đường thẳng AJ, AK với cạnh BC lần lượt là E và F. a. Chứng minh: I là tâm đường tròn ngoại tiếp tam giác AEF. b. Chứng minh: đường tròn ngoại tiếp tam giác IJK và đường tròn nội tiếp tam giác ABC có bán kính bằng nhau. + Tìm tất cả các bộ số nguyên dương (x;y;z) sao cho (x + y√2019)(y + z√2019) là số hữu tỉ và x^2 + y^2 + z^2 là số nguyên tố. [ads] + Cho tam giác ABC có ba góc nhọn, vẽ các đường cao BE và AD. Gọi H là trực tâm và G là trọng tâm tam giác ABC. a. Chứng minh: nếu HG // BC thì tanB.tanC = 3. b. Chứng minh: tanA.tanB.tanC = tanA + tanB + tanC.

Nguồn: toanmath.com

Đọc Sách

Đề thi học sinh giỏi Toán 9 cấp tỉnh năm 2017 - 2018 sở GDĐT Lai Châu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi học sinh giỏi Toán 9 cấp tỉnh năm 2017 – 2018 sở GD&ĐT Lai Châu; kỳ thi được diễn ra vào ngày 22 tháng 04 năm 2018. Trích dẫn đề thi học sinh giỏi Toán 9 cấp tỉnh năm 2017 – 2018 sở GD&ĐT Lai Châu : + Cho đường tròn tâm O đường kính AB. Vẽ dây cung CD vuông góc với AB tại I (I nằm giữa A và O). Lấy điểm E trên cung nhỏ BC (E khác B và C), AE cắt CD tại F. Chứng minh: a) Tứ giác BEFI là tứ giác nội tiếp đường tròn. b) AE.AF = AC2. c) Khi E chạy trên cung nhỏ BC thì tâm đường tròn ngoại tiếp ∆CEF luôn thuộc một đường thẳng cố định. + Cho biểu thức với x y 0 0 a) Rút gọn biểu thức A. b) Biết xy = 16. Tìm các giá trị của x, y để A có giá trị nhỏ nhất, tìm giá trị đó. + Tìm số tự nhiên n ≥ 1 sao cho tổng 1! + 2! + 3! + … + n! là một số chính phương.
Đề thi chọn học sinh giỏi Toán 9 cấp tỉnh năm 2017 - 2018 sở GDĐT Đồng Tháp
Đề thi chọn học sinh giỏi Toán 9 cấp tỉnh năm 2017 – 2018 sở GD&ĐT Đồng Tháp gồm 06 bài toán dạng tự luận, thời gian làm bài 150 phút, kỳ thi được tổ chức ngày 25/03/2018.
Đề thi học sinh giỏi Toán 9 năm 2017 - 2018 phòng GDĐT thành phố Thái Nguyên
Đề thi học sinh giỏi Toán 9 năm 2017 – 2018 phòng GD&ĐT thành phố Thái Nguyên
Tuyển tập 45 đề thi HSG Toán 9 có lời giải chi tiết
Tài liệu tuyển tập 45 đề thi HSG Toán 9 có lời giải chi tiết từ các trường THPT và cơ sở Giáo dục – Đào tạo trên toàn quốc. Các đề thi theo hình thức tự luận, hy vọng bộ đề học sinh giỏi các năm học trước sẽ giúp các em học sinh nắm được cấu trúc đề, nội dung cần ôn tập chuẩn bị cho kỳ thi HSG Toán 9 sắp tới.