Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát chất lượng lớp 9 môn Toán năm 2022 2023 sở GD ĐT Ninh Bình

Nội dung Đề khảo sát chất lượng lớp 9 môn Toán năm 2022 2023 sở GD ĐT Ninh Bình Bản PDF - Nội dung bài viết Đề khảo sát chất lượng lớp 9 môn Toán năm 2022-2023 sở GD&ĐT Ninh Bình Đề khảo sát chất lượng lớp 9 môn Toán năm 2022-2023 sở GD&ĐT Ninh Bình Công ty Sytu hân hạnh giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 bộ đề khảo sát, đánh giá chất lượng giáo dục môn Toán lớp 9 THCS năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Ninh Bình. Đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn từ Đề khảo sát chất lượng Toán lớp 9 năm 2022 – 2023 sở GD&ĐT Ninh Bình: Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Chương trình ca nhạc “Chân trời rực rỡ” của ca sĩ Hà Anh Tuấn tổ chức tại Ninh Bình vào tháng 2 năm 2023 có năm hạng vé, trong đó hai hạng vé có giá thấp nhất là Silk Road và Matsuri. Biết rằng nếu bán hết 500 vé Silk Road và 1000 vé Matsuri thì số tiền thu về là 1,9 tỉ đồng; nếu bán hết 1000 vé Silk Road và 1500 vé Matsuri thì số tiền thu về là 3,3 tỉ đồng. Tính giá vé Silk Road và giá vé Matsuri. Cho tam giác nhọn ABC nội tiếp đường tròn tâm O AB BC. Hai tiếp tuyến của đường tròn tại A và B cắt nhau tại M. Qua M kẻ đường thẳng song song với đường thẳng AC, cắt đường thẳng BC tại N. Chứng minh tứ giác MAOB là tứ giác nội tiếp. Chứng minh ACB MOB. Từ đó chứng minh tam giác MNO là tam giác vuông. Đặt một cốc đựng nước trên mặt bàn nằm ngang. Lòng cốc có dạng hình trụ với chiều cao 1 h 14 cm, bán kính đáy 1 r 3 cm. Mực nước ban đầu trong cốc là 2 h 8 cm. Người ta thả từ từ vào cốc một khối cầu đặc bằng sắt có bán kính 2r 2 cm. Hỏi cần phải rót thêm vào cốc bao nhiêu mi – li – lít nước để nước dâng đầy miệng cốc? (các kết quả làm tròn đến hàng phần trăm, lấy π = 3,14). File WORD (dành cho quý thầy, cô): [insert link here]

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát chất lượng Toán 9 năm 2023 - 2024 phòng GDĐT Ba Đình - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND quận Ba Đình, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 29 tháng 03 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát chất lượng Toán 9 năm 2023 – 2024 phòng GD&ĐT Ba Đình – Hà Nội : + Giải toán bằng cách lập phương trình hoặc hệ phương trình: Để trang trí cho gian hàng hội chợ xuân, một lớp học dự định gấp 600 con hạc giấy trong một thời gian đã định. Thực tế các bạn nam đã làm vượt mức 18%, các bạn nữ đã làm vượt mức 21%. Vì vậy trong thời gian quy định họ đã hoàn thành vượt mức 120 con hạc giấy. Hỏi số hạc giấy mỗi đội nam, nữ của lớp phải làm theo kế hoạch? + Một lọ hoa hình trụ có đường kính đáy là 22 cm, chiều cao 45 cm. Người ta phủ một lớp men bóng mặt ngoài lọ hoa (không kể đáy). Tính diện tích cần phủ men (lấy pi = 3,14). + Cho tam giác ABC có ba góc nhọn AB AC nội tiếp đường tròn O và các đường cao AD BE CF của tam giác cắt nhau tại điểm H. 1) Chứng minh tứ giác BCEF là tứ giác nội tiếp. 2) Kẻ đường kính AK của đường tròn O. Chứng minh BAD KAC. 3) Gọi M và N lần lượt là trung điểm của các đoạn thẳng BC và EF. Hai đường thẳng AN và OM cắt nhau tại điểm I. Chứng minh tam giác ANF đồng dạng với tam giác AMC và IB là tiếp tuyến của O.
Đề khảo sát chất lượng Toán 9 năm 2023 - 2024 phòng GDĐT Tây Hồ - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND quận Tây Hồ, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 27 tháng 03 năm 2024.
Đề khảo sát chất lượng Toán 9 năm 2023 - 2024 phòng GDĐT Sóc Sơn - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng học sinh môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND huyện Sóc Sơn, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 27 tháng 03 năm 2024. Trích dẫn Đề khảo sát chất lượng Toán 9 năm 2023 – 2024 phòng GD&ĐT Sóc Sơn – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Mẹ An vào cửa hàng mua một chai dầu gội đầu và một chai sữa rửa mặt với tổng số tiền theo giá niêm yết là 360 nghìn đồng. Tuy nhiên, hôm nay cửa hàng có khuyến mại: chai dầu gội đầu giảm 10% còn chai sữa rửa mặt giảm 5% so với giá niêm yết. Do đó mẹ An thanh toán cho cửa hàng khi mua hai sản phẩm trên là 332 nghìn đồng. Tính giá tiền niêm yết tại cửa hàng của chai dầu gội đầu và chai sữa rửa mặt? + Một hộp sữa đặc dạng hình trụ có bán kính đáy là 3,5 cm; chiều cao 8 cm. Hỏi bên trong hộp chứa bao nhiêu mi-li-lít sữa? (Coi thể tích phần vỏ hộp không đáng kể và lấy pi = 3,14). + Cho tam giác ABC có ba góc nhọn và nội tiếp đường tròn (O). Kẻ đường cao AH của tam giác ABC và đường kính AK của (O). Gọi E là chân đường vuông góc kẻ từ điểm C đến đường thẳng AK. 1) Chứng minh tứ giác AHEC là tứ giác nội tiếp. 2) Chứng minh: HE // BK và AB.AE = AC.AH. 3) Lấy M là trung điểm của đoạn thẳng BC. Gọi F là chân đường vuông góc kẻ từ điểm B đến đường thẳng AK. Chứng minh rằng M là tâm đường tròn ngoại tiếp HEF.
Đề khảo sát Toán 9 năm 2023 - 2024 trường THCS Minh Khai - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát năng lực học sinh môn Toán 9 năm học 2023 – 2024 trường THCS Minh Khai, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 22 tháng 03 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm mã đề A – B. Trích dẫn Đề khảo sát Toán 9 năm 2023 – 2024 trường THCS Minh Khai – Hà Nội : + Trong mặt phẳng tọa độ Oxy cho đường thẳng d y ax b. Tìm a b để đường thẳng d có hệ số góc bằng 3 và đi qua điểm M(-1;2). + Cho phương trình 2 x mx m 2 20 (m là tham số). Tìm các giá trị của m để phương trình có hai nghiệm 1 2 x (với 1 2 x) thỏa mãn hệ thức 2 x m 34. + Cho đường tròn tâm (O) đường kính AB, lấy điểm H thuộc đường kính AB, qua điểm H kẻ dây CD vuông góc với đường kính AB, lấy điểm E thuộc cung nhỏ BD (E khác B và D); AE cắt CD tại điểm F. 1. Chứng minh: Tứ giác BEFH nội tiếp. 2. Chứng minh: 2 CD AH HB 4. 3. Đường thẳng đi qua H song song với CE, cắt đường thẳng AE và BE lần lượt tại I và K. Gọi G là giao điểm của DE và IK, M là trung điểm của đoạn thẳng CE. Chứng minh: DI AE và ba đường thẳng CI, MG, BE đồng quy.