Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi Toán 8 năm 2022 - 2023 phòng GDĐT Như Thanh - Thanh Hoá

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi văn hóa môn Toán 8 cấp huyện năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Như Thanh, tỉnh Thanh Hoá; kỳ thi được diễn ra vào ngày 12 tháng 01 năm 2023. Trích dẫn Đề học sinh giỏi Toán 8 năm 2022 – 2023 phòng GD&ĐT Như Thanh – Thanh Hoá : + Cho biểu thức A. Rút gọn A và tìm số nguyên x để A chia hết cho 2. Cho các số thực a, b, c đôi một khác nhau thỏa mãn: a3 + b3 + c3 = 3abc và abc khác 0. Tính giá trị của biểu thức P. + Tìm cặp số nguyên (x;y) thỏa mãn phương trình: x3 + 3x = x2y + 2y + 5. Cho x; y là các số nguyên khác 0; 1; -1 và x + y chia hết cho xy. Chứng minh rằng x3 + 1 không chia hết cho y. + Cho tứ giác ABCD. Gọi E, I lần lượt là trung điểm của AC và BC; M là điểm đối xứng với I qua E. 1. Chứng minh tứ giác ABIM là hình bình hành. 2. Gọi N, F lần lượt là trung điểm của AD và BD; K là điểm đối xứng với I qua F. Chứng minh ba đường thẳng IN; MF; KE đồng quy. 3. Gọi O là giao hai đường chéo AC và BD. Kí hiệu: S; S1; S2 lần lượt là diện tích tứ giác ABCD, tam giác AOB và tam giác COD. Biết S1 = a2; S2 = b2 với a, b là các số dương cho trước. Tìm điều kiện của tứ giác ABCD để S = (a + b)2.

Nguồn: toanmath.com

Đọc Sách

Đề thi HSG Toán 8 năm 2020 - 2021 phòng GDĐT thành phố Vinh - Nghệ An
Ngày … tháng 04 năm 2021, phòng Giáo dục và Đào tạo thành phố Vinh, tỉnh Nghệ An tổ chức kỳ thi khảo sát chất lượng học sinh giỏi môn Toán lớp 8 năm học 2020 – 2021. Đề thi HSG Toán 8 năm 2020 – 2021 phòng GD&ĐT thành phố Vinh – Nghệ An gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 120 phút. Trích dẫn đề thi HSG Toán 8 năm 2020 – 2021 phòng GD&ĐT thành phố Vinh – Nghệ An : + Chứng minh rằng: 11^100 – 1 chia hết cho 1000. + Biết đa thức f(x) chia cho đa thức x – 2 dư 7, chia cho đa thức x^2 + 1 dư 3x + 5. Tìm dư trong phép chia đa thức f(x) cho đa thức (x2 + 1)(x – 2). + Cho tam giác ABC vuông tại A (AB < AC), đường cao AH (H thuộc BC). Trên tia HC lấy điểm D sao cho HD = HA. Đường vuông góc với BC tại D cắt AC ở E. a. Chứng minh rằng tam giác BEC đồng dạng với tam giác ADC. b. Gọi M là trung điểm của BE. Chứng minh rằng BM.BE = BC.BH. Tính số đo góc AHM. c. Tia AM cắt BC tại G. Chứng minh rằng GB.AH + GB.HC = BC.HD.
Đề thi Olympic Toán 8 cấp huyện năm 2020 - 2021 phòng GDĐT Ba Vì - Hà Nội
Thứ Năm ngày 22 tháng 04 năm 2021, phòng GD&ĐT huyện Ba Vì, thành phố Hà Nội tổ chức kỳ thi Olympic cấp huyện môn Toán lớp 8 năm học 2020 – 2021. Đề thi Olympic Toán 8 cấp huyện năm 2020 – 2021 phòng GD&ĐT Ba Vì – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 120 phút. Trích dẫn đề thi Olympic Toán 8 cấp huyện năm 2020 – 2021 phòng GD&ĐT Ba Vì – Hà Nội : + Tìm các số nguyên x, y thỏa mãn: xy – 4 = 2x + 3y. + Tìm các số nguyên x sao cho A = x(x – 1)(x – 7)(x – 8) là một số chính phương. + Cho hình thoi ABCD có BAD = 60°. Qua C vẽ đường thẳng d bất kì không cắt cạnh của hình thoi ABCD, nhưng d cắt tia AB tại E và cắt tia AD tại F. a) Chứng minh BCE đồng dạng DFC. b) Chứng minh BD2 = BE.DF. c) Gọi I là giao điểm của BF và DE. Tính số đo góc EIF.
Đề thi Olimpic Toán 8 năm 2020 - 2021 phòng GDĐT Quốc Oai - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi Olimpic Toán 8 năm 2020 – 2021 phòng GD&ĐT Quốc Oai – Hà Nội. Trích dẫn đề thi Olimpic Toán 8 năm 2020 – 2021 phòng GD&ĐT Quốc Oai – Hà Nội : + Cho a, b là bình phương của 2 số nguyên lẻ liên tiếp. Chứng minh: ab – a – b + 1 chia hết cho 48. + Một mảnh đất hình thang ABCD có AB//CD, AB = BC = AD = a, CD = 2a. a/ Tính các góc của hình thang ABCD. b/ Tính diện tích của hình thang ABCD theo a. c/ Hãy chia mảnh đất ABCD thành 4 mảnh đất hình thang giống hệt nhau bằng nhau. + Cho tam giác ABC. Trên cạnh AB lấy D, trên cạnh AC lấy E sao cho AD = AB, CE = 1/3.AC, CD và BE cắt nhau tại I. Tính các tỷ số.
Đề thi Olympic Toán 8 năm 2020 - 2021 phòng GDĐT Gia Lâm - Hà Nội
Đề thi Olympic Toán 8 năm 2020 – 2021 phòng GD&ĐT Gia Lâm – Hà Nội gồm 01 trang với 04 bài toán dạng tự luận, thời gian làm bài 90 phút; kỳ thi được diễn ra vào ngày 09 tháng 04 năm 2021.