Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát học kì 1 Toán 10 năm 2022 - 2023 sở GDĐT Hà Nam

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề khảo sát chất lượng cuối học kì 1 môn Toán 10 năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Hà Nam; đề thi được biên soạn theo cấu trúc 30% trắc nghiệm + 70% tự luận, thời gian làm bài 90 phút. Trích dẫn Đề khảo sát học kì 1 Toán 10 năm 2022 – 2023 sở GD&ĐT Hà Nam : + Cho tam giác đều ABC. Gọi M, N, P lần lượt là các điểm thỏa mãn BM = kBC, 3AN = 2AB, 5AP = 2AC. a) Biểu diễn AM theo hai vectơ AB, AC. b) Tìm k để hai đường thẳng AM, NP vuông góc với nhau. + Anh Việt có một mảnh đất hình tứ giác ABCD với AB = 4,2m, BC = 15,3m, CD = 5,4m, DA = 16,8m. Để tính diện tích mảnh đất, anh Việt lấy các điểm M, N lần lượt trên cạnh AB, AD sao cho AM = 1m, AN = 1m. Anh Việt đo được MN = 1,7 m. Tính diện tích mảnh đất (làm tròn kết quả đến hàng phần trăm). + Một quán cà phê đang bán ở mức giá 7 000 đồng cho mỗi cốc cà phê, trung bình mỗi tháng quán bán được 3 900 cốc. Chủ quán muốn tăng giá bán để thêm doanh thu, biết rằng nếu mỗi cốc cà phê cứ tăng thêm 1 000 đồng thì số cốc bán được trung bình mỗi tháng lại giảm đi 300. Hỏi chủ quán phải bán với mức giá bao nhiêu một cốc cà phê để doanh thu của quán trong tháng là cao nhất?

Nguồn: toanmath.com

Đọc Sách

Đề thi học kì 1 Toán 10 năm 2019 - 2020 trường Diên Hồng - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi học kì 1 Toán 10 năm học 2019 – 2020 trường THCS&THPT Diên Hồng, thành phố Hồ Chí Minh, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học kì 1 Toán 10 năm 2019 – 2020 trường THCS&THPT Diên Hồng – TP HCM : + Xác định Parabol (P): y = ax2 + bx + c có đồ thị hàm số như hình vẽ sau. + Giải các phương trình và hệ phương trình sau. + Tìm tất cả các giá trị thực của tham số m để phương trình vô nghiệm.
Đề thi học kì 1 Toán 10 năm 2019 - 2020 trường THPT Phạm Văn Sáng - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi học kì 1 Toán 10 năm học 2019 – 2020 trường THPT Phạm Văn Sáng, thành phố Hồ Chí Minh, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học kì 1 Toán 10 năm 2019 – 2020 trường THPT Phạm Văn Sáng – TP HCM : + Xác định parabole (P): y = ax2 + 6x + c qua C(2;5) và có trục đối xứng x = 1. + Trong mặt phẳng tọa độ Oxy, cho ∆ABC biếtA(-3;1), B (3;3), C(4;0). a) Chứng minh ∆ABC vuông. b) Tìm tọa độ điểm D sao cho DBAC là hình bình hành. c) Gọi H là hình chiếu vuông góc của B lên đường thẳng AC. Tìm tọa độ điểm H. + Với những giá trị nào của m thì phương trình x2 + 2(m – 4)x + m2 – 2 = 0 có hai nghiệm x1, x2 thỏa 3x1x2 + x1^2 + x2^2 = 18.
Đề thi học kì 1 Toán 10 năm 2019 - 2020 trường THPT Phước Kiển - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi học kì 1 Toán 10 năm học 2019 – 2020 trường THPT Phước Kiển, thành phố Hồ Chí Minh, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học kì 1 Toán 10 năm 2019 – 2020 trường THPT Phước Kiển – TP HCM : + Trong mặt phẳng Oxy, cho ba điểm A(-1;-1), B(3;1), C(6;0). a) Chứng minh rằng ba điểm A, B, C lập thành một tam giác. b) Tìm toạ độ điểm E thuộc Oy sao cho tam giác ABE vuông tại B. c) Tính góc 𝐴𝐵𝐶 và chu vi của tam giác ABC. + Xác định hàm số (P): y = -x2 + bx + c, biết đồ thị của hàm số (P) đi qua điểm A(-2;0) và có trục đối xứng là x = -5. + Khảo sát sự biến thiên và vẽ đồ thị của hàm số y = 2×2 – 4x + 2.
Đề thi học kì 1 Toán 10 năm 2019 - 2020 trường THPT Phú Hòa - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi học kì 1 Toán 10 năm học 2019 – 2020 trường THPT Phú Hòa, thành phố Hồ Chí Minh, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học kì 1 Toán 10 năm 2019 – 2020 trường THPT Phú Hòa – TP HCM : + Một trường THPT có tổng số học sinh khối 10, khối 11 và khối 12 là 1378 học sinh. Tổng số học sinh khối 10 và khối 11 bằng 38/15 số học sinh khối 12. Biết rằng 3 lần số học sinh khối 12 nhiều hơn 2 lần số học sinh khối 10 là 106 học sinh. Hỏi mỗi khối có bao nhiêu học sinh? + Tìm tập xác định của hàm số. + Cho tam giác ABC có AB = 7a, BC = 8a, AC = 9a. a) Tính diện tích tam giác ABC. b) Tính bán kính đường tròn ngoại tiếp tam giác ABC và cos ACB.